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ABSTRACT

Penetrationtestingis requiredior NationalComputerSecurityCenter (NCSC}ecurityevaluationof
systems and products for the B2, B3, and Al class ratings of the Trusted Computer System Evaluation
Criteria (TCSEC). This guideline is a definitive statement of what constitutes good penetration testing,
where itfits in the DODStandardSoftwareEngineeringand TCSEUGife cycles,andhow it is done
according to the bestvailablepractice, thd-law HypothesisMethodology(FHM). A review of the
TCSEC assurance products is presented, afothe evidence of a chain of reasoning on the compliance

of the targetystam to a given evaluation class, and against which penetration testing is mounted. Flaws
in theevidenceare the productsf penetratiortesting. To exemplify the methodologyresultsof past
experience argrovided throughout. The guideline concludeswith a shortreview of new R&D
approaches broadtonsidered patration testing. An extensive bibliography is provided of work in the
field, as are a set of Appendices thiaivide practical management guidance in planning and performing
penetration testing.



FOREWORD

This documenis intended for Executives, Strategic Planners, Program Managers, Technical Directors,
Engineersandinterdisciplinaryfolks wishing to acquire a view of Computer Security, an increasingly
complex set of requirements in the informatigstams bsiness. It is one guideline on penetration testing

in a Nay handbook series on secyiertificaion of computer systems to operate in a multi-level secure
(MLS) manner according to current DoD security standards, The Rainbow Series.

The Rainbow Series of technical satyuguidelines are produced by the NCSC of the National Security
Agency (NSA). Collectively, the documentssonsolidateknowledgeabout the degrea trust one can

place in a computer system to protect sensitive information, and organizes this knowledge into useable
criteria for evaluatinga computersystem'sability to resistunauthorizeduse. Thelandmark1983
document, "The Department oé2nse Trusted Computer System Evaluation Criteria, TCSEC," (CSC-
STD-001-83),replaced in Decembé&®85as the DoDsecuritystandardoD-5200.28-STDjs the
"Orange Book," the color of thevers for the first book in the Rainbow Series. The TCSEC established
for the first time a rating scafer secure operating systems, from minimal (C1) to high (A1) trust, based

on securif policy, protectia features mechanisms, and assurance measures. Subsequent publications in
the Rainbow Series haenplified the requirement®f the TCSEC, andxtendedts applicationfor
networks, database managemegsitesns, and distribudeapplications. The Rainbow Series of knowledge

and guidance has becormgluential in shapingdomesticmilitary, government,and commercial
develpment, procurementand products. It has alstmulatedinternationalsecurity standardsn

Canada, England, France, Germany, and the Netherlands.
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1.

1. INTRODUCTION

A securiy threat exists when there is the opporjunitotivaton, and technical means to attack: the when,
why, and how. Penetratidesting deals only with the "how" dimension of threats. It is a requirement for
high-rated secure/stems, ratingabove B1 of the Secure Computer System Trusted Evaluation Criteria
(TCSEC),that penetratiortestingbe completedwithout discoveryof securityflaws in theevaluated
product, as pamf a product osystemevaluationf]DOD85, NCSC88, NCSC92].Unlike security
functionaltesting,which demonstratesorrect behavioof the product'sdvertizedsecuritycontrols,
pendration testingis aform of stresstesting,which exposesveaknesses,e., flaws, in the Trusted
Computing Base (TCB).

Of all the security assurancenethods-- including layered design, proof of correctnesssoftware
engineering environments (SEE) --yopknetration testing holistic in its flaw assessment. It finds flaws
in all the TCB evidence: policy, specification, architecture, assumptions,initial conditions,
implementation,software, hardware,human interfaces, configuration control, operation, product
distribution, and documentation. It is a valued assurance assessment tool.

Among the important lessons presented in this guideline are the following:

Testing is a posteriori (analysis) not an a priori (design) assurance method.
Penetration testing is best at finding flaws not booty.

A flaw is an unspecified exploitable capability in B2, B3, and Al systems.
Penetration testing is holistic; it finds flaws in policy, spec, code, operations.
Good planning is needed: goals, resources, skills, TCB evidence, schedule.
Penetration testing begins after the system is under configuration control.
Residual flaws are those remaining after management approval to operate.
Flaw Hypothesis Methodology (FHM) is a widely used penetration approach.
FHM: Flaw Generation, Confirmation, Generalization, & Elimination stages.
20 yearsof experienceshows C1-B1l systemshave weak resistanceto attack.

O O0OO0OO0OO0OO0OO0OO0OO0OOo

(o]

Formal design methods are a new form of a priori penetration analysis.
o] A model Work Breakdown Structure (WBS) for penetration testing is given.

This gudeline is organized in five main parts, plus Appendices and Reference sections. These sections
define what good penetration testing is all about (Setjiowhere it fits in the product life cycle (Section
2), how it is done (Section 3), some results fromegstrience (Section 4), and future frontiers (Section
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5). The guideline addsses two principal audiences, managers, and technical evaluators. Managers will
gainmuchfrom reading Sections 1, 2, 5, and 6. Evaluators should read the whole document, but focus
on the "how to" Sections 3, 4, and 6.

1.1 What Is Penetration Testing?

Penetration testing is one method of evaluatingdloerrity strength of a Trusted Computing Base (TCB).

It is apseudo-enemgttackby a friendly evaluationteamon acomputersystemof interest to discover

ways tobreach the system's security controls, to penetrate the security perimeter of protection to obtain
sensitive inbrmation,to obtainunauthorizedservices, or to causlEamageto thesystemthat denies

service tdegitimateusers. It is @ovelform of testing, which attempts to discover features, functions,
and capabilities of theystem that ge unspecified and often unknown to its developers and users. It finds
capabilitiesthat can beexploitedto breachsecurity. These extracapabilitiesare "flaws" in the
specfications,design,jmplementationpperation,or documentatiorof the system Penetratiortesting

finds securit flaws andcomplements security functional testing, which confirms the correct behavior of
the specifiedecurity features, functions, and capabilities. Because it tests "what is not there," i.e., there
are nospecifications for flaws, penetrationtesting developsnovel ways of preparing test cases.
Es®ntially, hypothetical specifications are prepared from which tests are derived. However, most tests
are paper andencil "thought" experiments, like German Gedanken experiments in early 17th and 18th
Century physics. Some tests alive exercisesimilar to functionaltesting. The penetratiorntesting
described here iargelybased on thauthor'sFlaw Hypothesigdviethodology(FHM), the earliest and

most widely used approach [WEIS73].

Traditional methods of function testingdarepair are poor strategies for gaining assurance of TCBs. The
"hack andpatch"approach to assure secsgystemss alosing countermeasurmethodbecause the

hacker need find opbne flaw, whereas the vesrdmust fix all the flaws. FHM penetration testing is not
hack-and-patchyut amethodical holistic methodto test theeompletejntegrated, operational TCB --
hardware, firmware, softway and human interfaces -- and expose as many flaws as established as a test
goal, (se€Section3.2.2). It is arempirical review of designcoherencdrom abstractdesigntheory
throughimplementatiorto operationapractice. It is peer review of all the TCB assurance evidence. It

is one of many novel methods of satisfying assurance requirements. It works. It finds flaws.

1.2 What Is The Purpose/Goal Of Penetration Testing?

There arananypossiblegoalsof penetratiortesting,which mustbe clearly statedin testplans before

testing begins, else resources will jgandered. The primary goal is to satisfy TCSEC requirements for
B2, B3, or Al assurance. Peaditon testing provides independent validation of security trustworthiness

of asystem when performed by an impartial, competent evaluation team. Penetration testing is a useful
vendor design and development tool, partityli;m anticipation of product submission for evaluation per
TCSEC. Mag other goals have been séigéd by penetration testing. It has been used as "shock therapy"

to convinceskepticalmanager®f their vulnerability to attackthreats. It has been usedJniversity

teaching of systems/securitgngineeringgHEBB80, WILK81]. It wasimportantin identification of

! Galileo's famous experiment of droppirifjetent weight balls from the Tower of Pisa to prove that all objects fall at the same
rate, was a Gedanken experiment. He argued logiballyif an unsymmetric dumbbell-shaped body split while falling, the heavier
piece would not spontanusly increase in falling speed since there were no new forces acting upon it. Gravity would act alike on
both pieces, and by extension, on all free falling bodies.
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generic weaknesse¥ a systemarchitecturethat lead toimproved designs[ATTA76, BELA74,
MCPH74, SPAF89].

Penetration testing is not a game between gpdoand Binagement, students and teachers, citizens and
govenment,thoughsuchexamplesby hackers are rampant in the popular préssetratiortesting
shouldnot be partof Navy SystemAcceptancel ests. Acceptancel estsshowthata producimeets its
specificaibons. Security functional testing can be included in acceptance tests. But penetration testing is
an open ended testtinout specifications. No sensible, credible vendor could bid on a task without end.
Penetration testing is inappropriate as a coercive force on vendors.

Penetration testing can not proveesen demonstrate that a system is flawless. It is an empirical method
and unable tesaymuchaboutundiscoveredlaws. It is asthoroughandcomprehensivas thealent,
knowledge, skill, andiligence of the team members. It can place a reasonable bound on the knowledge
and experience requiréal a penetrator teucceedThatknowledgeapplied tocountermeasuresan

restrict the penetrator's assebelow this bound, and therefore, give a degree of assurance to operate the
system securely.

1.3 What Makes A Good Penetration Test?

A consistent tegthilosophyis basic t@oodpenetratiortesting.A philosophythatfocuseseffortson

finding flaws and not on finding bgobr othe hidden targets adds professionalism to the tests by placing

a premium on thiking instead of scavenger-hunt searches. Flaws are found when the system protection
mechanisms are breached. B2, B3, andcaddidatesystemsmust employ a referencevalidation
mechanism (RVMYor satisfactoryTCB protection.A TCB is anamalgamof hardware software,
facilities, procedures, arftimanactions,which collectively provide the RVMsecurityenforcement
mechanism of the Reference Monitor [ANDE72].

A Referencevionitor mediatesveryaccess tgensitiveprograms and data (i.egcurityObjects)by

users and their programs (i.gecurity Subjects). It is theecuritypolicy mechanismequivalentof
abstract datage managers oyfie enfocers in strongly-typed programming languages such as Modula,
and Ada. TheReferenceMonitor softwareis placed in itsown executiondomain,the privileged
supervisor state of the hardie, to provide tamper resistance from untrusted user/application code (i.e.,
untrustedSubijects). ThdreferenceMonitor softwareis often called the "Security Kernel," and is
complementedvith trustedprocesses (i.etrustedSubjects)performingauthorizedpolicy violations,
memoy sanitization or label creation, for exple. The Reference Monitor needs to be small and simple
in its architecture to allow human evaluation for

correctness anfbr assurancé¢hat only the authorizedsecuritypolicy is enforced.The resistanceto
penetration testing of this triad of pgliecnechanism, and assurance of the Reference Monitor is the basis
for the highrating of the TCB. Acomprehensivéestof the triad iSundamentato goodpenetration
testing theory.

A comprehensiveenetratiortest planimprovesthe oddsfor achievinggood penetratiortesting. A
penetration test plan estabéshthe ground rules, limits and scope of the testing. The test team identifies
what is the "object” being tested and whientesting is complete. For a commercial product, penetration
testplanning can begin whenever the vendor and the Navy agree, and the TCSEC evidence package is
ready. For asystemin developmentpenetratiortestingis a part of the overall security plan, normally
prepared in thearly phaseof the program, e.ghy SystemRequirementfReview (SRR). Since the
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TCSEC evidence packagell not be completeuntil after Formal Qualification Testing (FQT),
penetationtestingby the Navy evaluatorsvould beginafter FQT. Informal andoptionalpenetration

teding by the vendor could begin anytime there issolid design evidence.Evidence consistsof
architecturalinalysis of RVM at Preliminary Design Review (PDR), flaw generation at Critical Design
Review (CDR), and cod&estingduring Systemintegrationand Test (PQT/FQT). (These phases and
products ar@resented in detail in Section 2.) The Navy should cooperate with the vendor during such
optional penettion testing for the reasons noted above. It will also make the formal penetration testing
run more smoothly.

A keyrequiremenfor thepenetratiortest plan islefiningthe posturef the simulatedattacker. Is the
evaluator to pkathe role of an insider or an external unauthorized user? For B2 and higher systems, the
worst-ase assumption is hostile attack from authorized users inside the security perimeter who exceed
their authorization. Fonghoritative attack simulation the penetration team must be highly qualified and
professional as discssd in Section 1.4. Lastly, the plan should define the limits of the penetration test;
when is the test complete? Normialhe open-ended nature of flaw searching concludes when resources
or people are exhausted. However, a time limit can also be@pphliese and many other questions about
penetration testing procedures and tasks are covered in later sections, particularly Sections 2 and 3.

1.4 What Makes A Good Tester?

Goodpeople in aintegratedeammakefor good penetration testing. Desirable characteristics for the
team inclu@ experienced penetration testers, people knowledgeable of the target system, creative folks
with bizarre ideas oassociation®f softwaremodules,softwaredevelopmenimethodsand tools,
operatingsystemstontrol structure resourceallocation,input/output, humaninterfacesand memory
management. Succesgksters are individuals who are detail oriented, careful thinkers, and persistent.
A key requirement is for ethical, mature f@ssionals who can protect proprietary, sensitive vendor data,
particularly residual flaws in the system.

It is important that penetration testing employ evaluators who have the highest ethics since they will be
given access tproprietarydata anduncoverextremelysensitivesystemvulnerabilities.Penetration
testersmust be non-antagonistidcoward the vendorto encouragecooperation.They must protect
proprietaryinformationandvendorproductinvestmento theirtestingcanyield animproved security
product. Test results and discovered flaws during péoettesting must be kept strictly proprietary and

not made public by the test team.

Evaluator-developerooperationis a prerequisitéor good penetrationtesting. The vendormustbe
assureabf the professionalism of the testing staff and the protection of his proprietary data rights. Most
vendorshaveconsiderablénvestmenin their products, are quiseispiciousof the motivesof the test

team, and are anxious albohe results of the penetration testing, which if leaked could kill a product. A
good penetrationteamwill keep thevendorapprisedof the team'sactivitieswith frequentprogress
meetingsand resultfeedback.Good vendor rapport is builtby adding vendor personnel to the
penetration testingam, with prime responsibility given for guiding the team through TCSEC evidence
of the RVM, and fotraining briefings and clarifications of the RVM design. Early cross training of the
penetration team and the vendor's staff is an excellgriovialild cooperation, knowledge, and trust. The
peretration team teaches the vendor about the TCSEC assurance evidence requirements and the FHM.
The vendor staff teachehe penetration team about the target product, its development tools, test cases,
andinternalsdocumentation.Also, vendor-provided equipment, software, and test tools demonstrates
the vendor's commitment to the evalugtiomther building a cooperative spirit. Never allow antagonism



Introduction

between the vendor atgammembers talevelop.Antagonismis difficult to avoidsincevendorand
evaluator have competing goaiading zero defects versus finding flaws, respectively. Also, the vendor
must praiide a "frozen" copy of the systembeing testedwhich agreeswith the product under
configuration control. The vendor must not “fix* flaws in the testcopy as that would invalidate
configuration controlled assurance evidence.

Penetratio testing is exhausting work. It is careful, detailed "destructive" analysis of thousands of lines
of complex source code irsaiort period of time. The work burns out professionals rapidly. It is best for
penetration team members to rotate to other conseatiivities after about six months of testing. Fresh
evaluatorshouldbe brought irat the start. Penetration testing is an excellent systems training vehicle
when junior members are mixed with seasoned gsmfeals [HEBB80], and new folks can be motivated

to participate for this experience.

15 Who Is Responsible For Penetration Testing?

The simple anger is, the evaluators do the formal penetration testing [RUB86]. Standard commercial-
off-the-shelf(COTS) products, arsubmittedto theNational ComputerSecurityCenter (NCSCjor
evaludion andpublicationon theEvaluatedProductsList (EPL). In that case NCS(erformsthe
penetration testing.

The complex answer ipgnetratiortestingwill be performedby all partieswith a vestedinterest.A

COTS product will be penetration tested during productldewment and assurance evidence preparation

by its vendorfor self appraisawell beforesubmissiorto NCSCfor EPL consideration.For custom
systemscontracted by the Navy, the Navy will define who is responsible for penetration testing as part
ofthe contract and the system security accreditation task. The accreditation will involve the contractor,
the Naw end user, and thBMavy DesignatedApproving Authority (DAA), who has ultimate
responsibility for residual risks in a given operational environment.

Responsibili for penetration testing getseevmuddier for the trusted application component developer,
e.g., a secure database managerysteirs (DBMS) vendora new player on the security scene. In theory
the applicationdeveloperprepares separatmmponentassurancevidence which showshow the
application TCB is a componeRCB subset of the system TCB. It also shows how the component TCB
subset meets tiwiteria of Evaluation By Parts (EBP) of the distributed Reference Monitor [TDI91]. It
is clear that the componenncaot operate without its sibling components, therefore, penetration testing
must involve all theeomponentf the full TCB. However,if all the othercomponentsare rated
(previouslypenetratiortested), is thevholeretestedpr just thenew component, its interfaces, and its
environment assumptiocAsEBP theory is new and untried at this writing. Component vendor assurance
evidence mustlaim success of the integration. The evaluator's predicament and answer to the question
of retesting the whole TCB, awalits future practice and experience.
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2.

2. PENETRATION TESTING IN THE DEVELOPMENT
LIFE CYCLE

Penetration testing occursdah the development life cycle when there is sufficient product to be tested.
For custonDOD systems, the life cycle is based on MIL-Standards. DOD-STD-2167A is the standard
methodologyfor military systemsoftwaredevelopmentaind thdife cycle model used in this handbook
[DOD88]. DOD 5200.28-STDthe TrustedComputerSystemEvaluationCriteria (TCSEC), is the
indepemlent regulation guiding the evaluation of systems for trust [DOD85]. These two methodologies
are not harmonized to the consternatibaliosecurity and program managers. Some work has been done
to address thélending of thesetwo standardsparticularly in the Strategic Defenselnitiative
Organization(SDIO) programs [RADC90, GE91]. It ieyondthe scope of this guideline to do more
thancomment on this harmonization, however, penetration testing is consistently treated as "testing" in
the later stages of both development methods.

DOD-STD-2167Adescribes thdevelopmentife cycle as the series of major processes, reviews, and
deliverable products shown in Table 2-1.
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Table 2-1. DOD-STD-2167A Summary
Process Review Product
System Requirements Analysis SRR SSS
Software Requirements Analysis SDR SRS, SDP
Preliminary Design PDR SDD, STP
Detailed Design CDR SDD, STD
Coding and Computer Software Csu Code
Unit (CSU) Testing
Computer Software Component TRR CSC, STD
(CSC) Integration and Testing
Computer Software Configuration CSCI Tests CSCI, STR
Item (CSCI) Testing
System Integration and Testing PCA, FCA SPS, 0&S
PQT, FQT

Where:

SRR = System Requirements Review
SSS = System Subsystem Spec
SDR = System Design Review

SRS = Software Requirements Spec
SDP = Software Development Plan
PDR = Preliminary Design Review
SDD = Software Design Document
STP = Software Test Plan

CDR =Critical Design Review

STD = Software Test Descriptions
TRR = Test Readiness Review

PCA = Physical Configuration Audit
FCA = Functional Configuration Audit
STR = Software Test Results

SPS = Software Product Spec

0&S = Operation and Support Documents
PQT = Preliminary Qualification Tests
FQT = Final Qualification/Acceptance Tests

The TCSEC is not organized around development proses€£d0D-2167A. Rather it is a set of criteria,
design principles, and defopment practices for achieving evidence of trust. Table 2-2 lists the TCSEC
processes and/or products.
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Table 2-2. DOD 5200.28-STD Summary

Principle/Process

Product

Philosophy of Protection

Concept of Operation (CONOPS),
Security Architecture, Security Policy

Policy Modeling

Formal Policy Model

Formal Design

Formal Top Level Spec (FTLS), A1 Only

System Design

Descriptive Top Level Spec (DTLS)

Model Correspondence

Formal Policy Model to FTLS Map, Al Only

TCB Implementation

Code

Code Correspondence

DTLS/(FTLS A1) Map to TCB

Covert Channel Analysis (CCA)

Document Channels and Their Disposition

Functional Testing

TCB Test Plan, Procedures, Results

Security Testing

TCB Penetration Test Plan, Procedures, Results

Evidence Documentation Above plus: Trusted Facility Manual (TFM),
Security Features User's Guide (SFUG),

Configuration Management Plan (CMP)

2.1 How Does Penetration Testing Relate To Other Life Cycle Products?

Penetration testing is one part of séguesting in the TCSEC. Security testing will be performed by the
developers at CSCI Testing, when the code and docuioerdat frozen and placed under Configuration
ManagementResultscan be parof the STR, probably a subsidiary document or appendix because of
thesensitivityand/orclassificationof the results, i.eyulnerabilities. Plansfor penetratiortestingare
documented in the STP and reviewed at the PDR and CDR.

When penetration testing occurs for cussystems (i. e., non COTS) is controversial. From the vendors
view, penetration testing is performed by the evaluatfies the system is accepted (FQT) and before

it goes operationakgpart of accreditation testing. The government wishes penetration teftingor

as part ofacceptanceesting.The issues dealith complianceresponsibility, money,andsecurity. If
penetrationtestingis performedafter acceptanceestingandsecurityflaws are found, is thevendor
obligated to fix the flaws? Who pays for the repairs if they are significant? Furthermore, the system can
not be used operatialty until the accreditation tests are complete, which could be significantly delayed
by the repairs. Thgovernmentelievessecurityaccreditations a systemrequirementhe vendor
embraces when he bids and wins a progeamilar to performance, schedule, and pricing requirements.
Thevendorhasequallyvalid argumentsUnlike performance, schedule, and pricing requirements, the



Penetration Testing In The Development Life Cycle

solution of which he contrglspenetration testing is performed by the government, and is an open ended
task. Often therendorhas a'marchingarmy” of its staff awaitingacceptanceestcompletion.It is

difficult for the vendor to price and schedule tle#deand the possible repairs. Penetration testing before
acceptancewould be expensiveor the vendorand the government. Resolutionof this dilemmais

beyond this guideline. Recentamples have hdokfore testing on cost-plus contracts aaftier testing

on fixed-price contracts.

Two popular models of sofawe development are the "Waterfall" method [ROYCE70], and the "Spiral”
method [BOEHMS86]. They deal with distinct phasesfor requirements,design, specification,
implementation test,integration,andoperationas described iDOD-2167A. Whereas thgvaterfall

model sees these as serial phases, the &pidelfocuseson riskreductionby building iterative
prototypes,where eachprototype shakesout the requirements specifications,and performance
weaknesse®y its nature and prerequisitggnetratiortestingcomesso late in théife cyclethatthe
significant flaws it uncovershave amajor ripple impacton thedevelopmentprocess. Othethan
implementatiorflaws, fixing flaws requires repair of specs (SSS, SRS, SDD, SPS), code (CSU, CSC,
CSCI), documentatn (SDP, STP, STD, SPS), and the extensive TCSEC assurance evidence: code-to-
spedfication andcode-to-modetorrespondencespvertchannelanalysiscodeproofs(Al systems),
regression tests and repsaturitytests (STDSTR). The Spiral model is a better fit for high TCSEC
class securgystems as the iteration allows feedback for correcting the ripple effect of flaws discovered
on earlieriterations. Three iterative loops of the specification-code-tesspiral have beetypical
experience with development of such systems before they are ready for security evaluation.

Figure 2-lreflectsa relationshipbetweenDOD-2167A and TCSEC processes and products as
expressed in the SDI work for Rotabs [RADC90]. It is representative of similar experience on other
programs, bubotwithout controversyregardingwhen TCSECevidencds generated However, the
SDI-suggestedorrespondencef processes and produafthe standardsare shownas typical of
softwaretrustengineeringo exemplify the relationshipnecessaryor practicalapplicationof the two
methods. Feedback loops of the Spiral method are not show to simplify the presentation.

DOD-5200.28-STD (TCSEC) Methodology

Produc | Protection | Model | FTLS DTLS | Correspon-| CCA | Function | Security | Security
t Philosophy dences Testing | Tests Evidence
& Analyses

Events

Produc SSS SRS SDD,| STP Code Code STD STR 0&S
t STP

Events SRR SDR PDR CDR Coding & TRR CSCI PCA,

CSU Tests Tests FCA

DOD-STD-2167A Methodology

Figure 2-1. DOD-STD-2167A and DOD 5200.28-STD Correspondence
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Vendors ofcommercialproductsintendedfor evaluationandadditionto theEvaluatedProductd.ist
(EPL) follow a developmeniprocessanalogougo that of DOD-2167A. The vendor may conduct
penetratiortests as padf his development. Government evaluators of a product intended for the EPL
conduct penetration testing after the product has completed the vendor's FQT.

2.2 What Information Is Used To Develop Penetration Tests?

Product test cases are prepared floenproduct's functional specifications. In penetration testing we are
looking for deviations from functional specifiaatis, for capabilities not specified, i.e., for (dis)functional
speifications of flaws. In the final analysis it is the code that captures the requirements, specifications,
and dsign, and the codectually testedon the operationalhardware.However, there are no
(dis)functioral specifications for the penetration tests; equivalent "specifications" must be developed as
part of the gnetratiortest plan. TCSEC B2 and betsgstemgequire their developers to produce a
coherent colle@n of information on the trustworthiness of the system that will convince the evaluators
to grant the highest rating class. Theraditation process is a social process judging the adequacy of the
systemfor the application.The social process haanalogyto ajury trial with the useragent(e.g.,
procuement)actingas theprosecutiorlawyer, (We'll uncoverany productweaknesses.jhe vendor

acting as the defense lgav, (Product meets all theyer's security requirements.), the evaluators playing

the july role, (The evidence shows ,.gnd the DAA being the ultimate judge, (Product security strength
isfis not acceptable for the application threatremvhent). For such a model of the accreditation process,
penetration testing becomes a part ofévédence" of the system's security, and also a consumer of such
evidence in generating the (dis)functional specifications for penetration testing.

2.2.1 RVM Chain Of Reasoning

The TCB is the reference validation mechanism (RVM)rthediates all accesses by Subjects to Objects.
Thebasis of that mediation is defined as the Security Policy, the permission rules for access. Rules can
be as simple as a list usersallowedaccessattached to the object at the discretion of the owner, i.e.,
DiscretionaryAccessControl (DAC). Or the rules can be basedmanagemenmnandatedensitivity

labels, where Clearance must dominate Classificiatimels, i.e., Mandatory Access Control (MAC). The
Bell-LaPadula policy is the most widely cited in DOD applications [BELL76]. The Security Policy is a
most criti@l piece of evidence for penetration testing. It defines success. When a flaw is confirmed it is
because of a failure of policy or of policy enforcement.

Hardware provides the meansggolate the TCB from tampering by non-TCB (i.e. untrusted) user code.
The correct usef this hardwardy the TCBduringservice procedure calls, I1/0O acidck interrupts,

error hadling routines,start up anghutdownis partof the securityarchitecturesvidence Security
architecture should clegshow the TCB boundary, also called the "security perimeter" between trusted
and unrusteddomains.The securityarchitecturds anotherkey pieceof evidenceand ispenetration
tested for correct design, implementation, and operatiomefarore, the security architecture must show
that the TCB islwaysinvokedand nevebypassedor anyreason, else it is unable to provasf-
protection against unauthorized modification, or to control access per the security policy.

Protedon is achieved if the facility is closed, the hardware remains unbroken, operators follow correct
procedures, the TCB is unflawed, the segarithitecture is sound, and the security policy is appropriate
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for the environment and correctly implemented. The objective of security assurance is to show security
enforcement, i.e., trust, and dependence of one (iesédence on another in a coherent chain. Coherent

in both the mathematical sense of logical implicaiord in the social sense of being clear to deliberative
bodies of evalators and accreditors. When a flaw is detected in the chain of evidence, it is a case of the
proverbial "For want of a nalil ..." Penetration testing examines the evidence for "missing nails."

2.2.2 Concept of Operations (CONOPS)

Securly is a"weak link phenomenon,in which many trustedpartsplay a role in theprotection
philosoply of the system. Security is only as good as its weakest part. A global system view of how the
different marts play together is captured in the Concept of Operations (CONOPS) document. CONOPS
provides a macreiew of the rolesof trustedpartsof the TCB undedifferentuser andperational
scenarios. It is not a complete description or spedificdtir any given part, but is a complete description

of the wholesystem and the interdependence and interplay of the parts. It is an analysis technique and a
pedagogic device for surfacing incomplete system design and component interfaces.

Gereration of the CONOPS begins with a time line analysis of system security operations -- boot load,
systemsecurity officer (SSO) login, SSO loads and updates subject permissions and object restrictions
(e.g., access control lists, ACLs, seguéabels, readhite/append rules), SSO audit analysis, SSO alarm
response, and SS§stem shtdown. Superimposed on this time line are typical user security actions --
login, program execution, file access, device and I/0O access, mail and communications interaction, and
logout. Furthersuperimposean thesystemtime line are theactionsof special users, e.gsystem
administrators, maintenance and repair, databaseiathators, system and network managers, etc. Each
hassecurity-relevanactionsthatmustbe partof the CONOPS. Eaadbf thesehuman actions triggers
internal gstemsecurity enforcement modules. These are identified on the time line with their necessary
data flow, databases, and hardwakastly, unscheduled events are listed and considered to occur at the
worst of times for theystem. Error conditions, equipmentdiaé, communications breakdown, corrupted
data, overloads, etc. are mapped/agoustime line events. Collectively, theseeventsdescribe the
CONOPS, the theoretical behavior of the secakitments ofhe system that counter the expected threat
scenarios.

The CONOPS is prepared gan the system development life cycle, usually by SDR or PDR. It grows
in importanceas thesystemis implemented and is a key document in the development of security and
acceptance tests. It contributes signifigetatidefining he roles of all the system users, the labels of data,
access rules, and the TFM and SFMalencedocuments. It is anecessarypieceof evidencefor
assessing trust.

2.2.3 AllThe B2, B3, Or Al Evidence

Table 2-2 gives aomprehensivdist of the key security principlesof the TCSEC, theiassociated
processes when applicable, and @kiglenceproductsthat result. Section2.2.1 describesvidence
common to thédoD-STD-2167Aand the TCSEC. Thigectioncompleteshe review of evidence
products unique to the TCSEC.

Securiy policy, CONOPS,securityarchitecture and security policy model collectively containthe
securityrequirementgor the system.The securitypolicy modelmaps the security policy rules into the

system subjects, objects, access rules, and security functionality as seen by the user and his application
programs at the secuyrjperimeter. The security policy abstraction is made more concrete in the security
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policy model.Files,memorysegmentsl/O ports aradentified objects, and logon/logoff, create/delete
objects, read/print to ports are subjects, prolalted processes of the TCB. The security policy model
is the beginning of the formalstem deign process and is captured in a Formal Top Level Specification
(FTLS) for Al classsystemdy PDR. TheFTLS is oftenexpressed in ona theformal specification
languages-- EnhancedHierarchical DevelopmentMethodology, Gypsy, and Ina Jo [KEMMS86,
NCSC88]. For B2 and B3/stems, which do not require an FTLS, the preliminary design is captured in
a Detailed Top Level Specification (DTLS) and frozen by CDR.

A variety of security analyses in the TCB evidence collection provide the assurance that the design can
resistattack.Foremosbf these is theecurityarchitecturedesignanalysisdiscussedbove Lesswell

known are thevariouscorrespondencienplementatioranalysesTheseshowthe consistency between

the implementation stages: requirements, spatiifin and code. These analyses map the correspondence
between thearlyand latedevelopmenproductsfor example betweerthe FTLS and thecode.The
mapping is two wa-- specification-to-code, and cetie specification -- because, if there is specification
without coresponding code, we have an incomplete implementation of the requirements or design and,
if there is codavithout correspondingpec, we havpossible malicious code, e.g., Trap Door, Trojan
Horse, Virus, okWorm. There is a significant amount of code in the TCB that is not represented in the
FTLS or DTLS because it is not part of theilbie security interface, the security perimeter. The code-to-
specificationcorrespondencanalysismust accountfor all suchcode.The Alformal proofsare a
mathematicaldemonstratiorof the correspondencef the FTLS to thesecuritypolicy model,i.e., the
correctness criteria and initial conditions.

Covert channel analis (CCA) seeks e CB mechanisms that may be shared among untrusted security
partitions. Examplesof sharedmechanismsnclude commonequipment,status variabledyuffers,

schedling queues, and semaphores. These shared mechanisms may be used as covert "state" variables
and modulated to transmit slow levels of unauthorized covert communications. The penetration testing
team uses the vendor's CCA evidence to lodkdars: channels not closed or inadequately repaired, and

new channels. Sometools exist that help in CCAof the FTLS and can be usday the evaluators
[KEMM83].

Secuity functionaltest plans, procedures, and resultauaedul TCB evidencefor penetratiortesting
perusal and for reuse in the actual penetration tests.

2.3 What Happens To The Results Of Penetration Testing?

Self examinations theprimary purposefor the vendorperforminga penetratiortest. Itgiveshim an
assessmertf a probable TCSE@ating class on th&valuatedProductdList (EPL). The results are
proprietay and are used to fix problems. In some cases the flaws found during penetration testing of an
ealier product can lead to significant architectural changes in future versions of the product to achieve
a higher evaluation class.

Penetratiortestingcan be a researdbol to better understandyenericdesignflaws and possible
countermeasures. The Multics experience is a case in point [KARG74].

Penetration testing performegthe government eltzators produces lists of residual flaws, a description

of the secunit strengths, and an EPL evaluatiass. The detailed results are shared with the vendor and
kept proprietay. A joint vendor and evaluator publicllatin is released on the EPL rating achieved. The
summarized results, called a "setyuprofile,” are used by the end-user senior management to assess the
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risk of using the evaluategistemn in a given environent. If the residual flaws can not be repaired, or can
not be fixed in a tiraly manner, supplemental protection may be recommended, e.g., improved physical
protection,or higheruserclearanceevels.The risk management recommendation is presented to the
Designateddpproving Authority (DAA) for approval to operate the system with its residual flaws and
added protection for the specific application environment.
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3.

3. PERFORMING PENETRATION TESTING

There carbe many goals for penetration testing, ranging from security assurance [DOD85] to systems
training [HEBB80, WILK81]. For thisguideline, penetrationtesting focusesonly on thegoal of
generating sufficient evidea of flawlessness to help obtain product certification to operate at a B2, B3,
or Al security assurance level.

3.1 For What Are You Looking?

We ardooking for flaws not exploiting flaws to find dummy target files. An anecdote characterizes the
differencebetween seeking flaws and booty. A penetration test at a highly sensitive agency in the early
80's, had a#s objective accessing a dummy target file on a system considered by the agency to be well
protected. After considerable preparatibe, penetration team was allowed physical and terminal access
to the system and given a week to do its testing. Within the first hour, expected flaws were found, "trap
door" code waglantedto bypassaccessontrols,and searches were begonthe dummyfile. A
runaway printing loop in the target computer blocked use of the test terminal because the bypass patch
the team inserted in the TCB walsby a few bytes.The print loopmadethe activitiesvisible to the

ageng watchdog, who stood in awe as another termimal used to patch the patch and stop the runaway
printterminal.All this patchingwasperformedon-line, bypassinghe systemsecurityaccessontrols

without authorig or permission. The team had effective comifdhe operating system one hour after they
began. Theagencyimmediatelystopped th@enetratiortesting“game,"beingconvincedthatit was
vulnerable and needed a serious penetration testing assessment of its flaws.

Penetratiortestingis bestemployedto explore the broacapabilitiesof the objectsystemfor flaws
againstecuritypolicy, ratherthanin agamingsituationbetweenthevendorand thepenetratiorteam

trying toviolate access restrictions to an identified protected object -- "hack-and-patch”. Dummy target
acquisition penetration goals waste ¢ffyy forcing the test team to prepare and debug a break-in, rather
than focusing their energy on proven methods of finding flaws.

International travel requisgpassports and visas to control crossing borders. In banking, turning account
balances into casls, & form of boundary crossing called "conversion.” Control is imposed at the human
interface. The ReferenceMonitor definesa "security perimeter”betweenitself and untrusteduser
application code, and between differager processes. Flaws within the untrusted application code have
no impact on the TCB and astlittle interestto securityor penetratiortesting.Flawsinternalto the
securitykernel areof interestto security,but they cannot be exploited unless the security perimeter is
breached ocausedo malfunction(e.g.,fool the systeminto giving unauthorizedaiccess)Therefore,
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muchof penetratiortestingfocuses on flaws in the design, implementation, and operations integrity of
the security perimeter, the control of the boundary crossings of this critical security interface.

The variety of the TCBevidencedescribed irSection2.2 aredocumentof the TCBpolicy, model,
design,implementation test, andoperation.The analysisof the adequacyof the evidencecan be
overwhéming. Figure 3-1 showsthe evidencemplication chain:the operationis secureaccordingto

proper proeedures, facility management, and reliable hardware for the implementation (code); the code
implies its secure specs (DTla®d/orFTLS); the specs are correct per thedel; and,the model
saisfies the security policy andrequirementf the end useiReasonindogically, secureoperation
depends orecure hardware, code, specifications, model, policy, and requirements, and in that order of
dependency.

TCB Operation -1-> Hardware -2-> Code -3-> DTLS -4-> FTLS -5-> Model -6-> Policy

-1->  Configuration Management, Trusted Facility Manual (TFM),
Secure Features Users Guide (SFUG), and
Concept of Operations (CONOPS)
-2->  Security Functional & Penetration Testing
Covert Channel Analysis
-3->  Code-to-Specification Correspondence Analysis
-4->  Code-to-Specification Correspondence Analysis for A1l Class
-5->  Proof of Correctness for Al Class
Specification-to-Model Correspondence for B2, B3 Classes
-6->  Model Axiom Proofs for B2, B3, Al Classes

Figure 3-1. Evidence Implication Chain

Penetratiortestingattemptgo find "kinks" in thereasoningchainby studyingall the TCBevaluation

evidene. As in all things, history is a great teacher, and the results of past penetration tests are a major
starting place for penetration testifignere is a considerable wealth of published material on penetration
studies in Section 7, References.

3.2 How Do You Find Flaws?
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At the heart of the TABC is mathematical induction, sometimes called the "Induction Hypothesis." It is
the theoretical basis of TCSEC security. It argues that:

(1) If the TCB starts operation in a secure state, and the

(2) TCB changes state by execution from a closed set of transforms
(i.e., functions), and

3) each transform preserves defined security properties, then

4) by mathematical induction, all states of the TCB are secure.

Finding flaws beginswith finding weaknesses implementatiorof this protectiontheory -- policy,
model,architectureFTLS/DTLS, code,andoperation.The evidenceimplication chainof Figure3-1

forms the basi®f the flaw searchfor violations of the Induction Hypothesis.As examples false
clearances andepmissions void initial conditions (voids rule 1), bogus code (e.g., Trojan Horse, virus)
violates theclosedset(violatesrule 2), and a large covettanneldoesnot preserve th@nformation
containmensecurity properties of functions (spoils rule 3) of the Induction Hypothesis. In practice, the
penetration test B social process managed according to a plan with practical goals, bounds, resources,
and schedules.

3.2.1 Develop A Penetration Test Plan

Establishingthe tesgroundrulesis a particularly important part of penetration testing and is captured
in the pengationtest plan, a padf theDOD-2167ASTP at PDRor developmenprograms, and a
stand alone document for post-FQT goveminexaluations. The test plan defines the test objectives, the
product confjuration,the tesenvironmenttest resources, arsghedule.In particular, the test plan
defines the criteria for test completion.

3.2.2 Establish Testing Goal

The ground ruledor penetrationtesting define successfulcompletion. The penetrationtesting is
successfully concluded when:

(1) A defined number of flaws are found,

(2) A set level of penetration time has transpired,

3) A dummy target object is accessed by unauthorized means,
(4) The security policy is violated sufficiently; or,

(5) The money and resources are exhausted.

Most often the last criterion ends the penietretiest, after a defined level of effort is expended. For some
systems multiple independenpenetratiorteamsare employedto providedifferent perspectives and
increased confidence in the security of the product if few minor flaws are found.

3.2.3 Define The Object System To Be Tested

Penetration testing can bpplied to almost any system requiring TCSEC evaluation. However, C1, C2,
or B1 candtate systemsare intendedfor benign environmentsprotectedby physical, personnel,
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procedural, anéhcility security.Systemsn thesebenignevaluationclasses areot designedo resist

hostile attack and penetraticSuch attacks are always likely to uncover flaws. The TCSEC, wisely does
not require penetratidiesting for these systems. Penetration testing is most valuable for testing security
resistance tattackof candidatesystemdfor evaluationclasses B2, B3, or Akystemsdesignedo
operate in hostile environments.

A systemintendedfor TCSEC evaluation at B2 or higher is delivered with a collection of material and
documentdon that supports thesecurity claim. (See thedescriptionin Section2.) This controlled
collection of secunjtevidence defirethe security system to be penetration tested. The evidence must be
frozen and unmodified during the penetration testing period to avoid testing a moving target.

In circumstances where the Tar@étEvaluation(TOE) cannot be testedin acontrolledlaboratory
environmentandmustbe testedin situ, there is gossibility of conflict betweerusers anévaluators.
Experience hashownthat probing for security flaws may require systemhalts and dumpby the
penetrationteam, and when tests succeedthey yield unpredictableresults, e.g.uncontrolledfile
modification or deletion,or asystemcrash,which disruptsnormal operation.Therefore penetration

testing should be perfored on a stand alone copy of the TOE to assure non-interference with real users
of the system.

When the objectystem is a network, ¢hTCB is distributed in various components, the whole collection
of whichis called the network TCB, (NTCB). As noted in the TNI, penetration testing must be applied
to: (1) thecomponentof the NTCB, i.e., th@artitionsof the NTCB,and;(2) thewhole integrated
network NTCB [TNI87].Therefore the TNIMandatory,Audit, Identification& Authenticationand
Discretionay (M-A-I-D) network componets must be penetration tested individually and collectively --
individually during the component evaluation, and collectively during the network evaluation.

In a similar mannerraisted applications, e.g., a trusted database management system (DBMS), must be
penetration tested individuglhs a compnent, and collectively with the operating system TCB on which
it is dependent, according to the "evaluation by parts" criteria of the TDI [TDI91].

3.2.4 Posture The Penetrator

When an actual test is required to confirm a flgpotthesis, a host of test conditions must be established,
which derivedirectly from the testobjectivesand the tesénvironmentdefinedin the plan. These
conditions derivefrom the securitythreatsof interestand the posturef the "simulated"antagonist

adopied by the evaluators. Will it be an "inside job," or a "break and entry" hacker? These assumptions
demand different conditiorfer the test team. The test conditions are described as "open box" or "closed
box" testing, corresponding to whether tiast team can place arbitrary code internal to the system (open
box) or not, restrictednly to externallystimulatedfunctionaltesting(closed box). The TNiesting

guideline calls these " box" (functional) and "white box" (internal) testing, corresponding to closed

box andopen box testing, respectively [NCSC88b]. Open box penetration testing is analogous to CSU
testing, whee access to the internal code is possible, and closed box penetration testing is analogous to
CSCltesting,where codenodulesare arintegrated closed whole. In open box testing, we assume the
penetrator caexploitinternalflaws within the TCB and work backwardsfioed flaws in thesecurity
perimeterthatmayallow access to thiaternalflaws. In the casef a generapurposesystemsuch as

UNIX, open box testing is the most appropriate posture. For special purpose systems, such as network
NTCB components, which prohibit user code, e.g., where cad®i®M, closed box penetration testing,

by methods external toghproduct, is analogous to electrical engineering "black box" functional testing.
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In closed box testing the penetratoréady seeking flaws in the security perimeter and exploiting flaws
in the implenentation of the Interface Control Document specifications, (ICD). Open box testing of the
NTCB is still a test requirement of the vulnerability of the network to Trojan Horse or viral attacks.

3.2.5 Fix Penetration Analysis Resources

It was believed that finding flais OS VS2/R3 would be difficult [MCPH74]. However, another study
claimed"The authorswere ableusingthe SDC FHM, to discover over twenty such ‘exposures' in less
than 10 man-hours,and havecontinuedto generatéexposuresat the rateof one confirmed flaw
hypothesigperhour per penetrator. ... Only the limitations of time available to the study governed the
total number of flaws presented” [GALI76].

Penetration testing is an open-ended, labor-intensive methkithg flaws without limit. The testing must

be bounded in some maer, usually by limiting labor hours. Small teams of about four people are most
productive.Interestingly penetratiortestingis intense detailedwork thatburnsout teammembersf

regular rotation of the evaluators is not cargfulinagd. Evaluators should be encouraged to participate

in penetratiortestingwith reward opportunities to pursue new technologies that promise better secure
systemsExperienceshows the productivity of the test team falls off after about six months. Therefore,
a peetrationtest by four peoplefor no morethan six months-- 24 personmonths,is optimal.
Composition of théest team must include people knowledgeable in the target system, with security and
penetration testing expertise. Muahdi is spent perusing the security evidence. However, there must be
liberal access to the targgtstemto prepare and ruive tests. Théeamneeds access to all the TCB
creation tools -- compilers, editors, confgtimn management system, word processors -- and a database
managementstem (DBMS) to inventgrtheir databasef potential flaws, and to store their assessments
of the flaws.

3.3 Flaw Hypothesis Methodology (FHM) Overview

COMPUSEC's(ComputerSecurity's)raison d'etre is tautomatemany of the security functions
traditionally enforced g fallible human oversight. In thepa trusted system should perform as its security
specificationslefine, and do nothing more. In practice most systems fail to perform as specified, and/or
do more than is specified. Penetration testing is one method of discovering these discrepancies.

3.3.1 Evidence Implication Chain

For trusted ystems to be ratdBl2 or better, the trust evidence must show that theory and practice agree,
that the implicabn chain is correctly satisfied at each step. Penetration testing seeks counter arguments
to the truth asserted the evidence.e., it seeks to establish the evidence is false, or incomplete. A flaw

is such a&ounter argument. A flaw is a demonstrated undocumented capability, which can be exploited
to violate some aspect of the segupiblicy. The emphasis of the FHM is on finding these flaws. It is not

on building demonstrationsf their exploitation, though such examples may have merit in some cases.
Exploitation demonstrationgonsumevaluableresourceghat can better be applied farther flaw
assessment of the implication chain.
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3.3.2 Stages Of Flaw Hypothesis Methodology (FHM)

FHM consists of four stages:

(1) Flaw Generatiordevelops an inventory of suspected flaws.
(2) Flaw Confirmationassesses each flaw hypothesis as true, false,
or untested.
3) Flaw Generalizatioranalyzes the generality of the underlying security
weakness represented by each confirmed flaw.
(4) Flaw Elimination recommenddlaw repair, or the usef external controls to

manage risks associated with residual flaws.

These stages are shown if Figure 3-2.
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Figure 3-2. Flaw Hypothesis Methodology (FHM) Process Stages

Flaw Generationcan belikenedto acomputerstrategygame.In Atrtificial Intelligence(Al) game
software, there is a body of logic that generates "plausible moves" that obey the legal constraints of the
game, e.g., assures a chess pawn megeesbackwardlIn like fashion,penetratiortestingneeds a
"plausibleflaw generator.'Flaw finding begins with the evidence implication chain, our experience of
securiy failures of the reasoning chain imet systems, and their potential existence in the target system.
Thesecurityevidencefor the target system is the principal source for generating new flaw hypotheses.

Continuing our Agame analogy, there is a body of heuristic rules the game employs to determine good
plausiblemovesfrom poor onesLikewise,in penetratiortestingFlaw Confirmation,there ishuman
judgment, ie., a cerebral filter, that evaluates and rates each prospective flaw in terms of its probability
of existence and how significanit violates the security policy. Filtering flaws for confirmation employs
desk checking of code, specifications, evidence in documentation, and/or live testing.

21



Security Penetration Testing Guideline

The FlawGeneralization stage of penetration testing gives an assessment of our results in progress, the
game analogof "winning" or improving game position. Flaw Generalization assesses confirmed flaws,
seeking basic computer science reasonshgi exist. For exale: in the penetration testing of OS VS2
[LIND75] a simple coding error was traced to a library macro and multiple instantiations of the flaw in
the code. Inductive reasoning on the cause of confirmed flaws can lead to new flaws, generators of still
more weaknesses.

The Flaw Elimination stage consideesults of the Generalization stage and recommends ways to repair
flaws. Implementatiorflaws aregenerallyeasier to repaithandesignflaws. Someflaws may not be
practical to repir; slow covert timing channel flaws may be tolerable, for example. These flaws remain
in the gstem asresidualflaws, and place theperationalenvironmentat risk. However, external
countermeasuresan beecommendetb the DAAfor managinghese riskshy loweringthe TCSEC

Risk Index [CSC85] for example.

3.4 Flaw Generation

Flaw Cenerationbeginswith a periodof study of the evidenceto provide a basifor common
understanding of the object system. Early in the effort there is an intensive team brain-storming "attack
thesystem“sessionOtherattacksessions aren-goingthroughouthe penetratiortest. Targesystem
expertisenustbe represented in tladtacksessions.Each aspedf the systemdesignis reviewedin

sufficient depthduring the session for a reasonable model of the system and its protection mechanisms
to be understood and challenged. Flaws are hypothesized during these reviews. Critical security design
considerations are the bafkis the penetratiorteam'sprobingof the targesystem'slefensesThese

design consideratiofcome the "plausible move generators" of the Flaw Generation phase. The most
productive "top 10" generators are tabulated in Table 3-1.

Each candidate flaw is described on avHtéypothesis Sheet (FHS). (See Appendix 6.2 for details.) The
total set of FHS becomes the flaw database that guides and documents the penetration analysis.

Table 3-1. Most Productive Flaw Generators
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Past experience with flaws in other similar systems.
Ambiguous, unclear architecture and design.
Circumvention of "omniscient" security controls.
Incomplete design of interfaces and implicit sharing.
Deviations from the protection policy and model.
Deviations from initial conditions and assumptions.
System anomalies and special precautions.
Operational practices, prohibitions, and spoofs.
Development environment, practices, and prohibitions.
0. Implementation errors.

BOONOOA~WDNE

3.4.1 Past Experience

The literatwe is filled with examples of successful penetration attacks on computer systems [ABBO76,
ATTA76, BELA74, BISB78, BISH82GALI75, GALI76, GARF91,KARG74, MCPH74, PARK75,
SDCT76]. There is also a bodf penetration experieadhat is vendor proprietary or classified [BULL91,
LIND76, PHIL73, SDC75].Thoughgeneralaccess to this past experiencefien restricted,such
experience is amongetfbest starting points for Flaw Generation. The Navy should have access to these
materials, and/or should collect past results and its own new penetration testing experience.

3.4.2 Unclear Design

The design must clegitlefine the secuyitperimeter of the TCB. How are boundary crossings mediated?
Where are the secyrisittributes -- perrssions, classifications, IDs, labels, keys, etc. -- obtained, stored,
protected, accessed, and updatédat is the division of labor between hardware, software, and human
elements bthe TCB? And how are all themyriad other securelesignissues describeglsewhere
satisfied[GASS88]? If the securelesigncannot be clearly described, it probably has holes. The team
will rapidly arrive atconsensusy their probing, andncovernumeroudlaws and area$or in-depth
examination, particularly weakness in the evidence implication chain.

3.4.3 Circumvent Control

What comes to mind is Atlas down on one knee holdirthepvorld. The anthropomorphic view of TCB
designgivesthe numerougprotectioncontrol structureomnisciencen theircritical Atlanteanrole in
supporting the secudesign.If suchcontrolcan becircumventedandbypassedthe securitycan be
breached. Thesecurity architectureevidencemust show the noncircumventabilityof the control
structures. The attack sessionl rapidly identify these omniscient objects, be they password checkers,
label checkers, 1/0O drivers, memory maps, etc. A method of determining their vulnerability to attack is
to build a dependeggraph of subordinate contrddjects upon which the omniscient ones depend. Each
node in the graph iexaminedto understandts protection structure andsulnerability to being
circumventedspoofed,disabled lied to, or modified. If the securityarchitectureis weak or flawed,

control can beypassed. The penetration egtof OS VS2/R3 [SDC76] gives a detailed example of the
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use of dependepgraphs to determe the vulnerability of VS2 to unauthorized access to Job Data Sets,
virtual memory, and password protection control objects.

3.4.4 Incomplete Interface Design

Interfaces are rife wh flaw potential. Where two different elements of the architecture interface there is
apotential for incomplete design. This is often the case because human work assignments seldom give
anyone responsibilitfor designing thinterface. Though modern methodologies for system design stress
Interface Control Documen(ICD), these tend to be for interfaces among like elements, e.g., hardware-
hardware intdaces, software-software protocols. The discipline for specifying interfaces among unlike
elements is less well established. Hardware-software, software-human, human-hardware,
hardware-peripheral, and operatiggtem-application interfaces can have incomplete case analysis. For
example, the user-operator interface to the TCBtmbeial with all the combinations of human commands

and d#&a values to avoid operator spoofing by an unauthorized user request. Operating procedures may
be hardwareonfigurationdependentFor example bootingthe systemfrom the standarddrive may

change if the configuration of the standard drivehanged. All the various error states of these interfaces
may not have been considered.

Implicit sharingis now a classicalsourceof incompletedesignflaws. Sharingflaws usually manifest
themselves alaws in sharednemoryor shared variabldsetweenthe TCB and the user processes
during parameter passing, state varial@stextstorage settingstatus variableseadingandwriting
semaphores, accessing buffers, cdimigpperipheral devices, and global system data access, e.g., clock,
date, publi@announcement€arefuldesignof these interfaces is required to remove system data from
user memory.

3.4.5 Policy And Model Deviations

For B2 and higher evaluation classesstheurity evidence includes a formal security policy and a model

of how the targesystemmeetsthe policy. Subjects and objects attefined.The rulesof access are
spedfied. For lower evaluation classes, the policy and model are less well stated and, in the early years
of penetration testing, required the penetration team to construct or define the policy and model during
the attack sessions. However, penetration testing is not required for these classes today.

Consider thedequacyof the policy and themodelfor the targesystemls it complete?Is it correct
policy? Are there policiefor Mandatory and Discretionary Access Control (MAC and DAC),
identification and authentication (I&A), audit, trusted path, and communications security? Examine the
securityarchitectureand the TCRiesignto see if there are deviations from the stated policy or model.
For example, are there user-visiblgeaits that are not defined in the model, such as buffers and queues?
Omniscientcontrolobjects, as described $®ction3.4.3,shouldcertainlybe represented. Are there
deviations in the implemerttan of the policy and model? This consideration receives greater emphasis
during Flaw Confirmation, however, tiegemay be reasons to generate implementation flaws during Flaw
Generation.

3.4.6 Initial Conditions
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Assumptionsaboundin securesystemdesign,but arenot documentedvell. Evaluationclass Al does
better than otheevaluationclasses becausd it more rigorous formal designand useof formal
speifications which require entry and exit assertions to condition the state machine transforms. For all
evaluation classes the asgptions and initial conditions are often buried in thick design documentation,

if documented at allf these assumptions can be made invalid by the user, or if the initial conditions are
different in the implementation frothat of the design assumptions -- reality not theory -- the policy and
model mg be invalid and flaws will exist. THaduction Hypothesis of Section 3.2 begins with "... starts
operdion in a secure state” Initial conditionsdeterminethe startingsecure statdf the actualinitial
conditions are other than as assumed in the design, attacks will succeed.

Thewhole range of user security profiles and administrative security data, IDs, clearances, passwords,
permissions (MAC and DAC), define the "current access" ands&aaatrix” of the Bell-LaPadula policy
model[BELL76]. These data aiiaitial conditions. Their correct initialization is a testable hypothesis.
Otherassumptionsand initial conditionsneed to beestablishedandtestedby penetrationanalysis
including, the computer hardware configuration, softwaregaraftion, facility operating mode -- periods
processing, compartmentegstem high, and MLS -- opator roles, user 1&A parameters, subject/object
sensitivitylabels,systemsecurity range, DAC permissions, audit formats, system readiness status, and
more.

3.4.7 System Anomalies

Evely system is different. Differences which yriaave secustramifications are of particular interest. The
IBM Program Status Word (PSW) implemestigtus codes for testing by conditional instructions, unlike
the Univac 1100which has directconditional branchinginstructions.The IBM approachallows
conditional instructions to belxa as non-conditional instructions if the programmer avoids checking the
PSW [SDC76]. That is an anomal he Burrough85000-7000 computer-series Compiler software has
privilege to set hardware tag hitatdefine"capabilities,” many of which are security sensitive, such
as write permission. The Master Control ProgramyJChecks the tag bit for permission validity. User
code doesiot have thigprivilege. Codeimports carcircumventsuchchecks[WILK81]. That is an
anomay. ThelBM 370 I/Ochannelprograms are user prograthatcan access realemoryvia the
"Virtual = Real" commandwithout a hardwarenemoryprotectfault [BELA74]. That's aranomaly.
Nearly everysoftwareproduct haglearly statedimits andprohibitionson useof its featuresput few
definewhatoccursif the prohibitionis ignored.What happensvhenanidentifier greaterthaneight
characters is used? Is the identifiencated from the left, right, middle, or is it just ignored? Anomalous
behaviomay not be security-preservinfunctionality per thelnductionHypothesigheorythatcan be
exploited.

3.4.8 Operational Practices

The completeystem comes together duginperation when many flaws reveal themselves. Of particular
interest is thenan-machineelationship,the configurationassumptionsand errorrecovery.A well
designed TCRwill have thesystem'soot process progress in secure stafjggreasingOperating
Systemcapability.Each stag®ill checkto assure it begins and ends in a secure state. If there is need
for human nterventionto load securityparameters, theumanmustbe identified, authenticatedand
authorizedfor known actions. The evaluator must study the process to seié the design and
implementaibn of the boot process progressesrrectly. For example, how is the security
officer/administrator authenticated? If via passwords, hdwhdi password get loaded into the initial boot
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load? Wiere does the operator obtain the master boot load? From a tape or disk library? Is the physical
media protected from unauthorized accessjyct substitution, or label switching? If the security officer
loads or entersn-line permissiongo initialize the securityparametersf the systemhow does the

securiy officer authenticate the data? If users send operator requests to mount tapes/disks, to print files,
or a nyriad of other secusitsensitive actions, how doéetTCB support the operator from spoofs to take
unauthorized action? If thgstem crashes, does the system re-boot follow a process similar to the initial
"cold" boot? If therés a "warm" boot mode -- a short cut boot which salvages part of the system state --
does the secuyibfficer have a role in the boot to ensure the system begins in a secure state? How is the
assurance determined?

A common example ofainitialization flaw is to discover the system was shipped from the vendor with
the "trainirg wheels" still on [STOL89]. This class of flaw has been known to include training files that
provide ID-password-authorization® users sahey may train for jobs assecurity officers, system
administrators, databasentrollers,systemoperators. Theddes werenot removedby goodfacility
managemenandsystemoperationapractice per the Trustéehcility Manual (TFM), and can be used

by unauthorized parties to circumvent security controls.

3.4.9 The Development Environment

Flaws ma be introducedypbad tools and practices in thewggty kernel/TCB development environment.

A simple examfe is the conditional compilation, which is used to generate special code for debugging.
If the released code is not oespiled to remove the debug "hooks," the operational system code violates
the closed geule 2, and the secure transform rule 3 of the Induction Hypothesis of Section 3.2, similar
to a trap door to circumvent security measures.

Large untrusted reuse and run-time libraries are propertiesngf programming environments. The TCB
may be builtusingcodefrom thelibrary which finds its way into operational use. All kinds of security
flaws ma obtain from such environents. If the libraries are not security sensitive, they can be searched
for flaws that are gxoitable in the operational TCB. If the penetration team can substitute its own code
in the libraries, even mos®phisticated flaws can be created. Run-time linkers and loaders have similar
propertiesof appendingunevaluatedcode to thetrusted object code beindoaded to enable
code-Operatingysem communication. If access to such tools is unprotected, similar code-substitution
attacks are possible.

A classic &ack on an operational system is to attack its development environment, plant bogus code in
the sourcefiles, and wait for the normal software updatemaintenanceprocedures tonstall the
unauthorizeccodeinto the operational system object code. If the development and operational system
are the samehenthe penetratioteammustmountan attackon thedevelopmenenvironmenfirst,
particulary the gstem configuratiofiles. Flaws found there relate directly to the operational system, the
sourcefiles of which are then accessible andhodifiable by the penetratowithout authorization.
Substitute configuration files give the penetrator a high probability attack and essentially control of the
TCB.

3.4.10 Implementation Errors

In ary system built ly humans, there will be errors of omission and commission. This is not a promising
class of flaws to search for, as ther@o logic to them. Many are often just typos. Implementation errors
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that can banalyzedarethoseof the IF-THEN-ELSE conditionalform. Oftenthe programmer fails to
designor implementall the conditionalcasesincompletecaseanalysismay occurif the coddogic
assumesome of the predicates are performed earlier. Most often implementation flaws are just coding
errors.

Another aredor investigationis macros and other codeneratorslf the original macro iscoded
incorrectly, the error codavill be propagated imanydifferent partsof the system.Similarly, if data
declarations are incorrect, sheill affect different parts of the code. Incorrect code sequences should be
traced back to the source code anchtiiematiccodegeneratordo seef the code error appears in
multiple parts of the TCB.

Sometimes there are errors in tievelopmenttools that generatebad code. Few configuration
management toojsrovide a trusted code pedigree or history of all the editor, compiler, linker tools that
touch the code. Therefore, an error in these tools, which becomes known late in the development cycle
and is fixed, mamiss some earlier generated modulesattenot regenerated. The penetration team may

find it fruitful interviewing the development team for such cases.

3.5 Flaw Confirmation

Conducting the actual petnation test is part of the testing procedure developed in the plan. The bulk of
the testing should bg/lisedanken experiments, thought experiments that confirm hypothesized flaws in
the systemby examinatiorof the documentatiorevidenceandcode.There are three steps to tHaw
Confirmation stage:

(1) Flaw prioritization and assignment,
(2) Desk checking, and
3) Live testing.

3.5.1 Flaw Prioritization and Assignment

The Flaw Hypothesis Sheets (FHS) represent a celmnsive inventory of potential flaws. Sorted by the
probability of existence, paff, i.e., damage impact, if confirmed, work factor/effort to confirm, and area

of the gstem design, thygprovidea ranking of potential flaws for each design area from high probability

of existence/hig payoff (HH) to low probability/low payoff (LL). Usually, only high and medium ranks
are studied. The teanvitles the rank lists among themselves based on expertise in the different system
design areas. Thienove out as indivicals on their lists seeking to confirm or deny the flaws. Evaluators
share progress and findings atyibm meetigs. Management will reallocate staff and FHS to balance
the work load. Often, confirmed flaws mithe priority of other FHS, or provide the analysts with insight

to generate new FHS.

3.5.2 Desk Checking
The evaluatostudiesthe FHS and the TC8vidence Code,models,codecorrespondencmaps or

dependencgraphs are examined to see if the flaw exists. The evaluator must be flexible in considering
alternatives, but concentrate on what exists in the axidal and other evidence. The evaluators use code
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walk throughs, prior test results, theivn insights, and conversations with other team members to reach
conclusions on the likelihood of the flaw's existence.

Results ardocumented on the FHS. Confirmed flaws are flagged in the database for later examination.
An evaluator spendsfaw days,at most,on eactlaw. The deslcheckingcontinuesfor weeks,and
possibly a few months,yielding a FHSproductivity rate of 10-20 FHS/person-monthThe work is
tedious,detailed, and requires destructive thinking. Occasionally a FHS is of sufficient complexity and
interest to warrant a live test, but the investment in the testing process will lower productivity.

3.5.3 Live Testing

Test case déggn, coding,andexecutionis expensiveandnot the preferred FH8valuationmethod.
However,testingis oftenthe fastestway to confirm complexor time-dependerflaws. In penetration
testing,live tests aresimilarto CSClfunctionaltests, except the FHS is fluks)functionalspec, and
penetration testing may be destructive of the system.

Avoid running tests on the operatiosgstem since they can have unpredictable results. Also, the testing
is to confirm theflaw, not to exploitit. Test codeshouldbe anarrowly focused(by the FHS), quick
one-shot routine that is easier to produce if there is a rich library of debug and diagnostic routines.

3.6 Flaw Generalization

When the team assembles for theydaitetiry, the confirmed flaws of the day are briefed and examined.
Eachteammemberconsiderghe possibility thata confirmedflaw might exist in his area, or if the test

coce can be used on his FHS. Often a confirmed flaw has only medium payoff value but can be used in
conjunction with other confirmed flaws to yield a high payoff. This stringing of flaws together is called
"beading" and has led to many unusual high-payoff penetrations.

Deductivethinking confirmsa flaw hypothesislnductive thinking takes thespecificflaw to a more

general class of flaws. The team examined#sic technology upon which each confirmed flaw is based

to sedf theflaw is a member of a larger class of flaws. By this generalization of the flaw, one can find
otherinstance®of theweaknessor gainnewinsighton countermeasurefductivethinking proceeds
simultaneousiwith deductive thinking afiew instances of the flaw, so that the flaw becomes a new flaw
hypathesis generator. Some classic flaws were discovered by this induction, e.g., parameter passing by
refererce [LIND75, SDC76], piece-wise decomposition of passwords [TANE87], puns in I/O channel
programs [ATTA76 PHIL73], andtime-of-check-to-time-of-us€TOCTTOU) windows [LIND75].

These flaws are described in Section 4.

3.7 Flaw Elimination

Expertshave argued the futility of penetrate and patch, hack-and-patch methods of improving the trust
of a TCBfor substantiateasonghatreduce to th&raditional positionthat you mustdesignsecurity,

quality, performance, etc. into the system and not add it on [SCHE79]. However, most human progress
is made in incremental forward steps. Products improve with new releases and new versions which fix
flaws by patching, work-arounds, and redesign.
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The TCSEC requires dthownflaws be repaired. Thevaluatorssansuggesto thevendorrepairof

simple implementation and coding errors, or recommend known generic design flaw countermeasures.
After repair thesystemmustbe reevaluatedo confirm the flaw fixes and to ensure no new flaws were
introduced. Reevaluation is a complete repetitidthepenetration testing process. However, application

of the Ratings And Maintenance Process (RAMP)2@Bd better evaluations may be a possible method

to avoid total repetition. Thispeculation is described in Section 5.3.6. It is impractical for the vendor to

fix someflaws. Theseresidualflaws will result in a lower class rating. However, the using agency can
prepare a risk analysis that shows the DAA alternative security measures to counter the residual flaws.
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4. EXPERIENCE AND EXAMPLES

Flaw Hypothesigviethodology(FHM) has been a cosffective methodof securitysystemassurance
assessmenfor over twenty years.Unlike other assuranceethods,which focus on more narrow
objectives, e.gformal correctnesgroofsof design,or risk assessmertostsof failures,FHM seeks
securityflaws in the overall operation of a system due to policy, specification, design, implementation,
and/or operational errors. It is@moplete systems analysis method which uncovers flaws introduced into
the system at any stage of the product life cycle.

4.1 FHM Management Experience

For weak systems in the TCSEC C1-B1 classes, experience predicts a typical penetration team of four
peopleoperatingfor six monthswill generateabout al000FHS and assess about 4@he highest

priority. Some50-1000f thesewill be confirmed flaws. That yields a productivity of a flaw every one

to two person-weeks. Stronggystemsn the TCSEC B2-Al classdsy definition, mustbe flawless.
However,even thessystems have flaws; far fewer of course because of the greater attention to secure
system development. Such flaws are repaired, auditedymidered an acceptable risk. Higher flaw rates

may signal a lesser evaluation class than B2 is warranted for the target system. Appendices 6.3 and 6.4
provide a model of the taskschedules, and person-months of effort to perform a competent penetration
test based on this pastperienceSpecific penetratiortestplanningshouldadapt these dafar the
conditions and resources available.

4.2 Taxonomy Of Security Flaws

A taxonomy of flaws is useful if it organizes flaws for the following purposes:

(1) Provides a central reference collection of flaws.
(2) Catalogs flaws for descriptive communication,

3) Finds repetitive patterns signaling a common fault.
(4) Enhances tool-supported flaw search.

(5) Suggests common attack methods.

An extensivdibrary of flawsis in preparatioty NRL which addresses purpogk) [BULL91]. This
section suggests "sevgritf damage” as a taxongnsatisfing cataloging purpose (2). Attempts to define
generic flaw patterns and build patteratchingtoolsto aidflaw finding in sourcecode,exemplifies
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purposes (3) and (4), and aliscussedn Section5.1. Purpose (5) is gromisingtaxonomyand is
discussed in Section 4.3.

Confirmed flaws are sorted into valbility classes shown in Table 4-1. These vulnerability classes are
based on the degree of unauthorizedtrol of the system permitted by the flaw, i.e., damage extent. The
greatestvulnerabilityis TCB capture; theachineis undettotal control of the interloper, (TC -total
control --flaws). Flawsthat permit lessecontrol are unintentional,undocumentedapabilitiesthat
violate the polig model, but do not allow total control,\(P- policy violation -- flaws). Denial of Service
(DOS) flaws permit th penetrator to degrade individual and system performance, but do not violate the
confidentiality security policy, (DS -- denial of service --flaws). Installation-dependerftaws are
weaknesses in the TQBat obtainfrom local initialization of the system,such as a poor password
algorithm, (IN -- installation dependent -- figw¥hey may be TC, PV, or DS flaws as well. Lastly, there
are harmless flaws in the sense that ti@ate polcy in a minor way, or are implementation bugs, which
cause noobviousdamage,(H -- harmless-- flaws). These codesategorizeflaws presented in
subsequent sections.

Table 4-1. Vulnerability Classes Of Flaws

Flaw Gives TCB/System Total Control, (TC)
Security Policy Violation, (PV)

Denial of Service, (DS)

Installation Dependent, (IN)

Harmless, (H)

agrwbhpE

4.3 Taxonomy Of Attack Methods

FHM is a laborintensivemethodof penetrationtesting. DBMS, writing, developmentandtesting
supporttools are helpful. Automatedtools havenot succeededn finding flaws, where the greatest
intellectual effort is required. This section provides a representative collection of attack methods found
effective in penetration testing by the innovative and skilled penetration teams using the FHM.

4.3.1 Weak Identification/Authentication

Passwords are the cheapestn of authenticationWeak passwordshowever,are quiteexpensive,

allowing the penetrator to imp®nate key security administrators to gain total control of the TCB, (TC)
flaw. In onesystem,a weak password protected the passwiilkditself. The password was a short
English word which took but a few hours of trial and error to guess. A popular program called "Crack”
will runfor daystrying to crack passwords in the UNIX passwifiled[MUFF4a]. The program has a
passwordcandidategenerator,based on popular passwordgme permutationalgorithms, and
installation parameters, that encrypts the candidate and compares it with the list in the password file. It
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reportssuccessfuhits. Sincemostpasswords are initialized by system administration, this attack is an
example of an operational flaw and an initial-condition (IN) flaw.

On the DEC PDP-10nal many contemporary machines, there are powerful string compare instructions
that are used to compare stored with entered passWwbetse array instructions work like "DO-WHILE"
loops until the characterdeharacter comparaifs, or the password strings end. It was discovered in the
TENEX Operating $stem that the instruction also failed wheege fault occurred. This turned a binary
password predicate yes/no-- into a trinary decision condition -- yes/no/maybe -- that enabled piece-
wise constructiomf anypassword in anatterof secondsin this case théaw was aweakpassword
checking routine that permittedthe user tgositionthe candidategpassword across pageundaries
[TANE87]. This is an example of a hardware anomaly and an implicit memory sharing (TC) flaw.

On the IBM OS VS2/Rand similar vintage OS, files or data sets are protected by password. When the
user is abant during batch processing, surrendered passwords for the file are placed in the Job Control
Language (JCL)oad deck and queufle for commancto the batch process. THEL queue is an
unprotectediatabase, which is readable by any user process, thus permitting the stealing of passwords.
This is arexample of a badly designed user-system interface, where system data is placed in the user's
address space [MCPH74, SDC75, SDC76]. It is also an example of bad security policy, a (PV) flaw.

In mostsystemsthe user logsito a well designed password authentication mechanism. However, the
system neveauthenticategtself to the user. This laasf mutual authenticatiorpermits users to be
spoofed intsurrendering their passwords to a bogus login simulation program left running on a vacant
public terminal. This spoofhas beermroundforeverand isstill effective.It is anexampleof a poor
user-gstem interfae that yields a policy violation (PV) flaw. Mutual authentication is a necessity in the
modernworld of distributedcomputing,wherenumerousetworkservershandlefiles, mail, printing,
managementputing, gateways to other network, and specialized services for users on the net. Without
it, such services will surngbe spoofed, modifiednd/or falsified. New "smart card" I&A systems employ
mutual authentication countermeasures via encrypted challenge-response tokens [KRAJ92].

4.3.2  Security Perimeter Infiltration

Untrusted code must be confined and only permitted to call the TCB in a prescribed manner for secure
access to needegstem services [LAMP73]. These boungdarossigs of the security perimeter are often
poorly designedand result iffinfiltration" flaws. A classicexampleof this is the uncontrolled channel
program of the IBM 370. Since channel programs ¢oevatl to be self modifying to permit scatter reads

and writes, and the user can toffrmemorymapping.e.g., Virtual = Real, it is possible to write into
protected gstem memagrand modi§ coce and/or process management data. Attempts to eliminate these
problems Iy static anaksis of the channel programs in VMBailed to prevent clever "puns" in the code

from continued exploitation [ATTA76, BELA74, PHIL73].

Anotherexample of poor confinement is the Honeywell HIS 6000 GCOS suspend feature that allows a
user to freeze an interaa session for a lunch break or longer suspension, and resume later by thawing
theprogram. The design flaw stores the frozen image in the user's file space, including all the sensitive
system context needed to restart the code. Itimgla process for a user to edit the frozen image file and
modify the context data such that testarted program runs in system state with total control of the TCB
(TC) flaw. This is yet another example of an implied memory-sharing flaw.
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Among the most sophisticated penetrations is the legelmdakpoint attack of Linde/Phillips [ATTAT76,
PHIL73]. It is an excellent example of a beadingcit When a user plants a breakpoint in his user code,
the gstem replaces theearscode at the breakpoint with a branch instruction to the system. The system's
breakpoint routine saves theer code in a system save area. Later, when the breakpoint is removed, the
user code is restorech@ breakpoint feature helps the penetrator plant code in the system itself, i.e., the
replaced userode;anexampleof a harmless (H) flaw. It was observed that another existing harmless
hardware law, a movestring errorexit, left the addressf the systemmemorymap, rathethanthe
address of thstring, upon error return. It was possibleitducethe stringflaw by referenceo an
unavailable memgmage, i.e., a page fault. A third harmless flaw allowed control to return to the caller
while the stringnovewas in progress in trealledprogram. Thevaluatorsset up the beaattackby
plantinga breakpoint at earefully preparednstructionon the same page astring move command.

They carefuly selected a string that crossed a page boundary. They executed the string move, and upon
regaining control, released thege containing the end of the long string. That caused a page fault, when
the string move cragd the page boundary, at which time the breakpoint was removed. In restoring the
pre-breakpoint user code, thystem retrieved theaved user code but, because of the harmless hardware
string-error flaw, erronealy wrote the user code into protected system memory, specifically the system
page map. This unauthorized system modification was possible because a hardware design flaw in the
page fault error returleft the page addresd the systemmemorymap, not the page address the
original user'string. Theattackhadsuccessfullymodified the systemmap,placinguser data in the
system interrupt vector table. The attack gave arpitrantrd of the TCB. Another subtle flaw in implicit
memory sharing, a (TC) flaw.

4.3.3 Incomplete Checking

Imports and exports creshe security perimeter per the TCSEC are either label checked or use implicit
labelsfor the 1/OchannelemployedLots of flaws occurwhenlabels arenot employed,or employed
inconsetently. Another attack exploits interoperability betweensystemswhich use different label
semantics. Th®efenseData Network (DDN)gemploysthe standardP datagramRevisedinternet
ProtocolSecurityOption (RIPSO)ecuritysensitivitylabel [RFC1038]. Itiffers from the emerging
CommerciallP SecurityOption (CIPSO)tandards. Here is a situation ripe for a future security attack
and (IN) flaw.

Array-bounds overflow is a particulgithasy atack which is quite pervasive and difficult to counter. The
flaw manifests itdéin system operation, but its cause is traceable to the development compiler's failure
to generate code fopadamic arrg boundschecking. When the array bound is exceeded, the code or data
parameters adjacent to the suaee overwritten and modifile In one case the user-entered password was
storedadjacento thesystemstored password so theo strings (arraysgould be rapidly compared.
However, there was fmunds checking. The user simply entered a maximum sized password twice so
that it overflowedthe usearrayinto the systemarraycreatinga passwordnatch[BISH82]; a certain

(TC) flaw.

Incomplete casanalysisleads toflaws. Either thedesignspecificationhasnot considerecall the
conditions of an IF-THEN-ELSE fornay the programmer goofed. In either event, the penetrator creates
the missing condition and forcegtbode to ignore the consequences, often creating an exploitable state,
a (PV) flaw. ThelBM PSWflaw of Section3.4.7 is such aaxample.Thel|BM 360 introducedthe
Progam Status Word (PSWjhich containeda statusonditioncodefor thosemachineinstructions

which haveconditionalexecutionrmodes Many programmers ignore the PSW status code and assume
the execution result of the instruction. This is pmmmting practice, but a surprisingly frequent occurrence
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[BULL91]. Oftenthe programmerbelieves priochecksfilter the conditionsprior to theinstruction
execution and that the data can not cause the unanticipated condition, thus ignoring the condition code.
The penetratomustfind an opportunityto reset the parameteafierthefilter checksbut beforethe
conditionalcode execution. Time-Of-Check-To-Time-Of-Use (TOCTTOU) attacks are exactly what's
needed for penetration.

A TOCTTOU flaw is like a danglingparticiplegrammaticaflaw in English; the check code is distant

from theuse code, enabling intervening code to change the tested parameters and cause the use code to
take incorrectpolicy-violating actions,a (PV) flaw. The attackis aform of sleightof hand.The

penetrator sets up a perfgdatinocent and correct prognapossibly an existing application program, and
through multi-tasking or multi-processing, has angtihegram modify the parameters during the interval
between check and use.€Timterval may be small, which requires careful timing of the attack. The flaw

is both an implicit memory sharing error and a process synchronization problem. The solution is not to
place gstan parameters in usenemory,and/or prohibit interruptibility of “critical region” code

[LIND75, MCPH74, PHIL73].

Read-before-Write flaws are res@lcontrol flaws. Beginning with TCSEC C2 class systems, all reused
objectsmustbe cleanedbeforereuse. This is required as@untermeasurt® theinadequateesidue

control in earlier gstems. ldwever, the flaw persists in modern dress. When disk files are deleted, only
the name in the file catalog is erased. The data records are added to free storage for later allocation. To
increase performance, these used record$esnezd on reallocation, (if at all), not on de-allocation. That
means the data recgrdontain residue of possibly sensitive material. If the file memory is allocated and
read before data is written, the residuaccessible. A policy of write-before-read counters this flaw, but
such polig may not exist, or be pogrimplemented. Thilaw also appears with main memory allocation

and garhge collection schemes. In one example, the relevant alphabetical password records were read
into memay from the disk file for the login password compare. After the compare the memory was left
unchanged. Using other attacks, such as thglaocends overflow described above, that residue memory
could be read and passwostsvengedBy carefully steppingthroughthe alphabet, theomplete
password file could be recreated, a (TC) flaw [LIND76].

4.3.4 Planting Bogus Code

The most virulent attacks are those creayetid penetratonhinserting bogus code into the TCB, a (TC)
flaw. Bogus code itiudes all forms of unauthorized software, Trojan Horse, Trap Door, Virus, Bombs,
and Worms. Fugamentallyflaws thatadmitbogus code ariéaws in theconfigurationcontrol of the

TCB. Theflaw mayoccuranytime throughouthelife cycle of the TCB. When development tools are
uncontrolledbogus code can limbeddedn thetoolsandtheninto the TCB. Ken Thompson's ACM
Turing Lectureaptly documenteduch armattack| THOM84]. But there are easiarethods;planting
bogus code in thein-timepackageof the most popular compiler and/or editor. Recent attacks on the
Internet were exploitati@of poor configuration control. Known flaws in UNIX were not fixed with the
free vendor patches. The hacker used the flaws to obtain unauthorized access [SPAF89].

Among the moreolorful attacksagainsthumanfrailty in controlling boguscode,is the Santa Claus
attack. It is a clasc example of an unauthorized code import, achieved by spoofing the human operator
of a securesystem. A penetrator prepared an attractive program for the computer operator, who always
ran withsystemprivileges.The program printed a picture on thigh-speedrinterof Santa and his
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reindeer. The kinglou alwa/s see posted at @§tmas in and about the computer facility. However, there
wasa Trojan Horse mixed in with Dancer, Prancer, and friends that modified the operating system and
allowedundetected access for the interloper. Before you belittle the computer operator's folly, consider
your own use of "freewarg@rograms down-loaded from your favorite bulletin board. There are as many
user and operatapoofs as there are gullible people looking for "gain without pain." Eternal vigilance

is the priceof freedomfrom spoofattacks.Also, improvedrole-authorizatiorcontrolscanlimit the
damage propagation of such attacks on human foibles.
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5. NEW FRONTIERS IN PENETRATION TESTING

This guidelineconcludesy speculatingon future directions of penetration testing. The assumption is:

the battlebetweenthe TCBdeveloper/operataand the hackewill continueunabatedBetterlegal
protectionfor userswill always trail technology, and the technology will improve for both antagonists.

It will be continuous digital electronic warfare between security measures, hacker attacks, user counter
measures, and security counter-counter measures; perpetual offense against defense.

The defensedeveloperof TCBs, areusing bettermethodsof designingandimplementingtrusted
systems. Lessons are beipgtined from past penetrations, both tests and real attacks. The generic flaws
are leading to better understanding of secpalicy for confidentiality, integrity, and service availability,

and of the confinementof overt and coverthannelswhen sharingcommonmechanismsn trusted
systems. Thisunderstandings being captured iimproved machinearchitecturesvith segregated
privilege domains or protectioings to reinforce security perimeters and boundary crossings. Hardware
that supports safe and rapichtaxt switching and object virtualization. Cryptography is playing a larger
role in confidentialig, integrty, and authentication controls. Computers are getting faster and cheaper so
thatsecuritymechanismsvill be hardware-richkandnot be performancelimiting in securesolutions.
Software is getting bett in quality, tools, development environments, testing standards, and formalism.

5.1 Automated Aids

Earlier, in thenfancy of penetrationtesting,it was believedthat flaws would fall into recognizable
patterns, and toolsould be built to seek out these generic pattern during penetration testing [ABBO76,
CARL75, HOLL74, TRAT76]. Unfortunately,the large numbeof different processorspperating
systems, and programming languages used o BaBs, with their different syntax and semantics made

it difficult and impractical to agp such pattern-matching tools to penetration testing. Considerable cost
is required to port ore-implementthetools for each newenvironmentand different programming
language. Also, the flaw patterns tended to be system specific.

As modern securgistems focusra few operating system standards, e.g., UNIX, MS-DOS, etc., fewer
programminganguagese.g., Ada and C, and maratureExpertSystemdecomeavailable future
pendration testingtool initiatives to captureflaw patternsmay be moresuccessfulA few specific
examples of this trend are beginning to appear.

5.1.1 Virus Antigens
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A variety of commercialf avalable anti-virus products recognize telltale patterns on disks prior to main
memoy loading. These progms contain proprietary algorithms that recognize the signatures of dozens
of the viruses that have plagued the industry for MS-DOS, Macintosh, UNIX, and other OS.

5.1.2 CERT Tools

Defense Advanced Research Projects AgdDARPA) set up th€omputer Emergency Response Team
(CERT) following the release of the Internet Worm attack of Niar 1988, with the mission to monitor
break-inattempts,and sendut security alerts to thdanternetcommunity. As a clearinghouseof
information, it periodicallyreleasesecuritytoolsfor defensiveuse, which, however, have penetration
testing value as well. Two suchtools are examplesof progress, COPS andRACK [FARM90,
MUFF4a]. COPS is a collectiaf short shell files and C code that test for known weaknesses in UNIX
file systems. CRACK is a password guessing program that contains a collection of cracking algorithms
and probable password gkéneratesandidategpasswordsencryptsthemper UNIX login and tries to

match them irthe UNIX password file. Given the password file, it runs in background for a week or so
producing a successful hit list.

5.1.3 Intrusion Detection

Considerhle research interest has produced a number of prototype intrusion detection tools: Haystack,
NIDX, DIDS, IDES, and ISOA [SMAHAS88, BAIER88, DIAS91, LUNT92, WINK92]. These analytic

tools monitorthe TCB's audit records for patterns of abnormal behavior, and flag suspicious conditions
to theSecurity Officer. The intrusion detection model "is based on the hypothesis that exploitation of a
system'svulnerabilitiesinvolves abnormaluseof the system;therefore,securityviolations could be

detected from almmmal patterns of system usage" [DENN86]. Key to the success of these tools is their
ability to discriminate between intrusions and legitimatedvior -- the classical Type 1 (false acceptance

of an intrusion) versusype 2 (false alarm fdegitimate user) error tradeoff. Expert Systems technology

is appliedto build heuristic rules of statistically abnormal behavior. Intrusion Detection is so new there
is little empirical data on its operational use or success.

5.1.4  Specification Analysis

Formal specs (FTLS) aproduced for Al system as part of their assurance evidence. For these systems
a number of interesting tools exist favit analysis of the FTLS. Foremost of these tools are the theorem
provers, that prove thepecifications correct according to their formal policy model [KEMMS86]. Failed
proofs may indicate potential flaws. (See Section 5.2 for more details.)

Flow anajzers, such as the Uytisina Flo or thélitre Flow Table Generator are tools used on the FTLS
to automaitally generatdists of potentialunauthorizednformation flows betweenstate variables
[ECKM87, KRAM83]. Theflow tool automaticallyanalyzeghe FTLS statestransformsandinitial
condtions andgeneratesll conditionsof informationflow thatlead to overt and covestite-down
channelsandpotentialflaws. Sometools can filter the potential flows against a user-supplied security
policy to eliminate all valid flows from those more suspicious.

Most novel are FTLSymbolic execution tools such as Ina Test éna Go [ECKM85, WHEE92]. These

tods interpret the formal specifications under various initial conditions controlled by the tool user, in a
mannersimilar to alanguagenterpreter. Theesultingvaluesof state variables can be observed and
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comparedgainstheory(e.g.,exit assertions) anexpectations. Deviations may be flaws. These tools
are novel forms of rapid prototyping of security behavior directly from the FTLS.

5.2 Formal Methods Of Penetration Testing

Formal methodsemployrigorousmathematicaspecificationsof the TCBdesign,assumptiongnitial
corditions, and correctness criteria, tR&LS. Formaltools take thesepecificationsand generate
correctness theorems and proofs of the thesi@nd the design they portray. It is hoped that these formal
methods can achieve similarcsess at the level of code proofs. A new form of penetration analysis is in
progress with new@B designs -- rigorous formal models of the TCB. These models describe the TCB
behavior as state machinstgte transition rules, security invariants, initial conditions and theorems that
mustbe provenPenetratioranalysisis almostinseparabldérom the formal designprocessproducing
conjectureof flaws with the model and trying to prove them as theorems. This is a rigorous extension
of the FHM. If successfulhe correctness proof versus flaw conjecture proof becomes part of the design
process, and uncovers problemsyaarthe design, enabling iterative redesign, unlike FHM which often
comes too late in the development cycle to permit more than hack-and-patch.

Recent work ¥ Gupta and Gligor suggest a theof penetration-resistant systems. Their method claims

to be"a systemati@pproach tenetratioranalysisenables theerification of penetration-resistance
properties, and is amenable to awthion” [GUPTA91, GUPTA92]. They specify a formal set of design
properties thatharacterize resistance to penetration in the same framework used to specify the security
policy enforcement model a set of design properties, a set of machine states, state invariants, and a set
of rules for analysis of penetration vulnerability. Five penetration-resistance properties are described:

(1) System isolation (tamperproofness).

(2) System noncircumventability (no bypass).

3) Consistency of system global variables and objects.
(4) Timing consistency of condition (validation) checks.
(5) Elimination of undesirable system/user dependencies.

Gupta andsligor contendsystemflaws "are causedby incorrectimplementatiorof the penetration-
resistance properties [that] can identified in system(e.g., TCB) source code as patteafis
incorrect/absent valation-check statements or integrated flows that violate the intended design or code
specificatims." Theyfurtherillustrate how the modelcan be used timmplementautomatedools for
penetratioranalysis. They describe an Automated Penetration Analysis (APA) tool and its experiments
on Secure XENIX source code. Barksultsfrom this work indicate that penetration resistance depends
on many propertiesbeyondthe ReferenceMonitor, including the developmentand programming
environment, that isharacterize as the Evidence Implication Chain in Section 3.1. Though limited only
to software angsis of attacks on ¢hTCB from untrusted user code, and leaving significant other system
avenues for attack, the work yzave the wafor new @proaches to building and testing trusted systems
and tip the balance in favor of the "good guys."

5.3 Open Issues In Penetration Testing

This section discusses unresolved management and policy issues affecting penetration testing.
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5.3.1 Penetration Testing Contracting

Vendorsshouldbe encouragedo support their security claims with strong security evidence. Because

of the @en-ended nature of penetration testing, fixed-price contracts are not appropriate when vendors
are expected to condymtnetration testing as a means of self-assessment. Penetration testing is an open
ended efforivithout a completionspec, as the prionaterialhereattests The effort is overwhenan

agreed criteria is met. A fixed-price &\of effort, or cost-plus contract is a more appropriate vehicle for
penetration testing.

5.3.2 NVLAP Penetration Testing

The NIST National VoluntgrLaboratoy Accreditation Program (NVLAP) recommends that third-party
laboratoriegest network protocols. Possibly such an approach can be applied to security accreditation
(including penetratiotesting) as well. Mitre, Aerospace, AF Cryptologic Support Center, NSA already
perform similar functions, but not on a commercial badie new NIST Federal Criteria divorce security
functionality from security assurance. Thaiolicy could give NVLAP penetrationtesting groups
responsibiliy to evaluate vendor secure products. The NVLAP program is quite new; its future success
can set the precedent for third-party security evaluation labs.

5.3.3 Penetration Testing and Composibility

A significant openquestionis: How are evaluatorsto judge the security of a systemcomposedof
individually evaluateccomponenproducts?Unlike the TNIrequirementgor a top-downdesign,the
composed ystemis built bottom-up,andinterfacespecificationswill mostlikely not exist. The TNI
compositiorrules will not apply. For a composed system above B1, each of its components will be B2
or better and will, therefore, have been penetration tested. The ensemble will need a new, system-level
penetrabn test. The composibility controversy is beyond the scope of this guideline, however, FHM is
applicable to such composed systems and may be part of the controversy's resolution.

5.3.4 Penetration Testing In Open System Environments

Penetration of networks is tgdan academic "sport." Theis no question that the FHM is applicable and
effective. Thdifficulty is assigning responsibility for fixing flaws when the network is a heterogeneous
collection of evaluated products from different vendorsinvtegrated network, following the TNI or TDI,

is not at issue since thesponsibilityfor flaws falls to theintegrationcontractorand there is some
guidancefor networktesting[NCSC88b].Again, it is beyondthe scopef this guidelineto establish
policy for rating heterogeneousetworks,however the holistic natureof penetratiortestingmakesit
among the best methods available for such evaluations.

5.3.5 Penetration Testing Of Trusted Applications
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The trusted application must follow the $EC TDI to be evaluated. That guideline defines the evidence
necessarfor evaluation, includinggnetration testing. Penetration testing must be performed on the OS,
theapplication,and thecombinedsystem, the latter two efforts fall to the application vendor. The TDI

is new and the secure DBMS vendors are just entering the high assurance arena of penetration testing.

5.3.6  Penetration Testing For Ratings Maintenance (RAMP)

RAMP is definedfor lower ratedsystemgbelow B2) becaustney havefew developmenassurance
requirements [NCSC89]. High rategstems currentlhaveno RAMP policy; the vendor must reevaluate
new releases of tNECB. Penetration testing can be a significant factor in reducing cost of reevaluation,
by focusingthe penetrationtestingto thoseevidenceproductschangedoy the new release. It is the
Evidencelmplication Chainthatis beingconfirmedby FHM, andif itemscan bedemonstratedo be
unchanged, considerable simplification of the penetraésting should be achieved. This thesis has been
tested successfully on the B2 evaluation of trusted XENIX [MCAU92].

5.3.7 Penetration Testing Of Other Policies

Seairity is policy specific,but theFHM is not. It is based on thEvidencelmplication Chain,where

policy comesearlyin theevidencechain.Integrity, availability, safetyare new policiesf interestfor

which penetration testing is applicablinfortunately, these policies have no defined standard analogous
to the TCSECand therefore, they have no definition of evidence, no theoretical foundation comparable
to the ReferenceMonitor, and noevidencechain to examinefor flaws. Once suchtheoretical
underpinnings exists, penetration testing will be a valid assurance method.

54 Applicability Of FHM To Other Harmonized Criteria

The TCSEC has spurred developmentfoffimation technology (IT) security evaluation criteria in other
countries, particularly in Canada[CTCPEC92] and Europe [ITSEC91]. These haenerated
competitive pressurerfaompatible alignment of U. S. commercial security criteria, i., €., "harmonized
criteria” asreflectedin thedraft FederalCriteria [FC92] publishetby NIST and NSA.Unlike the
integratedratingsof the TCSEC digraphs, these newer criteria have split the criteriseparate
functionality and trustequirementsthese ardurther sub-dividedin waysparticular to eachational
criteria.Profilescan then be defined as specific collections of functionality and trust requirements.

It has been questied whether penetration testing has meaning for a Target of Evaluation (TOE) based
on these newer criteria. The question has importance fguikisline because of the shift of U.S. Federal
Criteria tounbundlefunctionality from assurance. Fanostof the reasons expressed earlier in this
guideline,penetratiortestingwill be requiredor high assurancevaluationseven under these new
criteria. The applicabilit of FHM to theharmonized criteria is discussed here as it will be applied in the
1990's.

5.4.1 Canadian Evaluation Criteria

TheCanadian Trusted Computer Product Evaluation Criteria (CTCPEC) defines a Security Functional
Profile as amppen-endedset, an n-tuplethat can describe amfinite variety of productsecurity
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requirements. It is at the oppostéremefrom the TCSEC andvoids"interpretations'for network,
database, or othempplications.The CTCPECdivides security functionality into four groups:
Confidentiali, Integrity, Availability, and Accountalitly requirements. Each of these are further divided,
e.g., covertchannels(CC), MAC (CM), DAC (CD), and reuse (CRiiscretionaryintegrity (ID),
mandatory(IM), physical(IP), rollback (IR), separaticsf duties(lS), and self test (IT); containment
(AC), robustness (AR), amdcovery(AY); audit(WA), I&A (WI), andtrustedpath (WT). There are
various degreesf increasingstrengthfor eachfunctional requirementivision, e.g., CC-3, WA-4.
Defined profiles exist for TCSEC digraphs. For example:

Profile 3 =B2 = [CC1, CD2, CM3, CR1, ID/IM1, IS2, IT1, WAL, WI1, WT1]

Eight trust levels TO - T7 parallel the TCSEC: TO=D, T1to T5=C1to B3, and T7 = Al. T6 is
between B3 and Alusing "semi-formal” detail design methods. Penetrationtestingis a clear
requrementfor trustlevels T4 to T7."Flaw hypothesidesting"is required at T1 to TRenetration
testing is oted through out the trust requirements, but there is no description of what or how it is done.
The CTCPEC follows vgrclose) theideas, definitions, and concepts of the TCSEC and is exactly what
the TCSECwould be if the digraphs were brokémo their functionaland trustcomponents. It is
reasonable, therefore, to conclude thateess similar to that acceptable for TCSEC evaluations -- this
guideline -- is germane to the CTCPEC.

5.4.2 European Evaluation Criteria

A TOE of the European Information Techngl@&gcuriy Evaluaion Criteria (ITSEC) is either a security
product or asystemlts penetratiortestingis thereforecomparable in scope penetratiortestingin
accordance with the TCSEC. However, a TOE's evaluation criteria consists of a 2-tuple, (F, E); one of
ten secunit functionality classes, F, and one of six ipgadent evaluation levels, E. To match the TCSEC
classes of FHM intereswe have the following 2-tuples: (F4, E4), (F5, E5), (F5, E6), corresponding
to B2, B3, Al respectively.Thefirst five functional classeof the ITSEC, F1 ... Fhatchthe six
functional classes of the TCSEC, C1 ... Al, with F5 functionality the same for B3 and Al.

The six ITSECevaluationclasses are applied to the TOEvelopmenProcess (DP)Development
Environment (DE), and Operational Environment (OE), each of which is further divided as follows:

DP: Requirements, Architectural Design, Detailed Design, Implementation

DE: Configuration Control, Programming Languages and Compilers,
Developer Security

OE: Delivery and Configuration, Setup and Operation

The ITSEC is so new theielimited practical experience to draw from in looking at the applicability of
FHM, so wemustlook at the publishedompaniondocumentthe Information TechnologySecurity
Evaluation Manual (ITSH) [ITSEM92]. The ITSEM builds on the ITSEC describing how a TOE will
be evaluated according to the ITSEC to prevddasis for "mutual recognition” of evaluation certificates
by the partigpating nations.It definesmeasuregor achievingmutual recognitionof test results --
reprodudbility, repeatability,objectivity, andimpartiality. It also describesrganizationakules and
procedures for the evaluation procdisgefines the Information Technology Security Evaluation Facility
(ITSEF), thendependentaboratorythat performs the evaluations -- similar to the NVLAP idea noted

42



Appendices

in Section5.3.2., and th€ertificationBody (CB), which assuresmpartialand propeevaluation--

similar to the TGEC DAA -- and issues the certificate of compliance with the security standards of the
ITSEC.

Penetration testing is wigahotedin the ITSEM and follows TCSEC practice quite closely. Penetration
testing "... is based upon an ITSknterpretation of the SDC Flaw Hypothesis Methodology ..." ITSEM
breaks the four stage$ FHM into five sequential test sub-activities: prepare, identify, specify, execute,
and follow up. These follow quite closely this guideline, which is directly applicable as written.

Testng for errors and vulnerabilities is required by the ITSEC even at evaluation class E1, retesting of
correctedflaws is required at E3ndependentulnerability analysisis neededat E4, and all these
requirements are cumtilze with higher evaluation classes. These test requirements are quite similar to
those addressed by the FHM described in this guideline.

Assurance of a TOE d@ivided in the ITSEC into correctness and effectiveness. Correctness is based on
the sixevaluationclasses, E1-E&ffectivenesf a TOEinvolvesa numberof considerationsthe
suitability of the security functionality for the proposecenvironment,analogousto the TCSEC
environment gidlelines [CSC85]; whether the functionality yields a sound security architecture; ease of
useof securityfunctions;assessmerf the security vulnerabilities during development and operation;
and the strength of the secyritechanisms to resist attack. All these items are "Generators" in the FHM,
(see Section 3.4).

The FHM depends adiscoveringfailuresin theEEvidencelmplication Chain,startingwith a security

policy, (see Section 3.1). The application of FHM to a TOE would require a similar procedure. A TOE
has a hienahy of securitypolicies:a SystemSecurityPolicy (SSP), éSystemElectronicinformation

Secuity Policy (SEISP), and &ecurityPolicy Model (SPM), correspondingo securityobjectives,
detailed security enforcement mechanisms, and semi-formal policy model, respectively. These policies
are tied to the functiwl classes and form the basis for the correctness criteria for testing. Together with
the evaluationclasses, akvidencelmplication Chainis formedfor a specificTOE, andFHM can be
successfully applied.

5.4.3 Federal Evaluation Criteria

Protectionprofiles aredefinedby the Federal Criteria for Information Technology Security (FC) as "...

an abstract gification of the security aspects of a needed information technology product.” It consists
of five elements: Description, Rationale, Functional Requirements,Development Assurance
Requirements, and Evaluation Assuranceuiements. Like the CTCPEC and the ITSEC, prepackaged
profiles can be defined for the TCSEC digraphs. The FC defines the functional and trust sub-elements
in a mannesimilar to the other criteria. These definitions also appear consistent (harmonized) with the
CTCPEC and ITSEC.

Penetratiortestingin the FC is gradedinto four levelsbased on the scope, precisiooyverageand
strength of the angdis methods used. PA-1 Basic Penetration Testing, is limited to unprivileged users,
application program interfaces to the TCB, public demtation, and examples of past flaws. PA-2 Flaw
Hypothesis Testing, extends PA-1 with design and implementation documents,source code,
specifications, and tests based orRRHM. PA-3 Penetration Analysis augments PA-2 with penetration-
resistanceverification methods similar to those described in Section 5.2. PA-4 Analysis of Penetration
Resistanceaugments PA-3 with formal verification proofs of the TCB penetration resistant properties
using theorem proving tools as desdlilie Sections 5.1.4 and 5.2. Evidence from these components are
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the plans, procedures, and resaftthe tests andnalysesAgain, aswith the other criterighHM is
applicable to the FC.

In summay, FHM shoutl be equally applicable to all the national evaluation criteria and the material of
this guideline is germane.
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6. APPENDICES

Sections 6.1 through 6.4 are the following four appendices:

O O O O

Abbreviations And Acronyms

Flaw Hypothesis Sheets (FHS)

Model Penetration Testing Tasking

Model WBS Schedule, Milestones, And Labor

The appendices are intended to help evaluators and their management with procedures and planning.

6.1

Abbreviations And Acronyms

The following abbreviations and acronyms are used in this guideline:

ACM

AF

Al

APA

Al, B3, B2

B1,C2,C1
CCA

CDR

CERT
CIPSO

CMP
COMPUSEC
CONOPS
CPIF

Association for Computing Machinery

Air Force

Artificial Intelligence

Automatic Penetration Analysis

Higherevaluationclasses in the Orandggok (TCSEC) indecreasingsecurity
strength

Lower TCSEC evaluation classes in decreasing security strength
Covert Channel Analysis

Critical Design Review, DOD-STD-2167A

Computer Emergency Response Team, DARPA initiative

Commercial Internet Protocol Security Option, LAN security label format
Configuration Management Plan, TCSEC

Computer Security

Concept of Operations

Cost Plus Incentive Fee type contract
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CsC Computer Software Component, DOD-STD-2167A
CSCI Computer Software Control Item, DOD-STD-2167A
Csu Computer Software Unit, DOD-STD-2167A
CTCPEC Canadian Trusted Computer Product Evaluation Criteria
DAA Designated Approving Authority, TCSEC
DAC Discretionary Access Control, TCSEC
DARPA Defense Advanced Research Project Agency
DBMS Data Base Management System
DDN Defense Data Network
DIDS Distributed Intrusion Detection System
DOD Department Of Defense
DOS, DS Denial Of Service flaw, FHM
DTLS Detailed Top Level Specification, TCSEC
EBP Evaluation By Parts, TDI
EPL Evaluated Product List, NCSC
FC Federal Criteria for Information Technology Security
FCA Functional Configuration Audit, DOD-STD-2167A
FHM Flaw Hypothesis Methodology
FHS Flaw Hypothesis Sheet
FP Fixed Price type contract
FQT Final Qualification Test, DOD-STD-2167A
FTLS Formal Top Level Specification, TCSEC
HDM Hierarchical Development Methodology, also a formal specification language
HHHM ...LL  FHS priorities from High-High, High-Medium to Low-Low
ICD Interface Control Document, a part of a system specification
IDES Intrusion Detection Expert System
ID, IDs User or component Identification
I&A Identification and Authentication
Ina Flo Ina Jo flow analysis tool used in CCA of FTLS
Ina Jo A formal specification language for FTLS
Ina TestIna Jo symbolic execution tool for rapid prototyping FTLS
IN Installation Flaw
IP Internet Protocol
ISOA Information Security Officer Assistant
ITSEC Information Technology Security Evaluation Criteria,
European counterpart to the TCSEC
ITSEF Information Technology Security Evaluation Facility for ITSEC
ITSEM Information Technology Security Evaluation Manual for ITSEC
JCL Job Control Language, IBM computers
MAC Mandatory Access Control, TCSEC
MCP Master Control Program, e.g., Operating System
MS-DOS MicroSoft Disk Operating System for PCs.
NCSC National Computer Security Center, NSA
NIDX Network Intrusion Detection eXpert system
NIST National Institute of Science and Technology,
formerly the National Bureau of Standards (NBS)
NRL Naval Research Laboratory
NTCB Network Trusted Computing Base, TNI

NVLAP National Voluntary Laboratory Accreditation Program, NIST
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0&S
PCA
PDR
PQT
PSW
PV
RAMP
RIPSO
RVM
SEE
SDD
SDI
SDIO
SDP
SDR
SEISP
SFUG
SPM
SPS
SRR
SRS
SSP
SSS
STD
STR
TC
TCB
TCSEC
TDI
TFM
TNI
TOCTTOU
TOE
TRR
WBS

Appendices

Other Direct Costs financial category in contracting
Operation and Support documents, DOD-STD-2167A
Physical Configuration Audit, DOD-STD-2167A
Preliminary Design Review, DOD-STD-2167A

Preliminary Qualification Test, DOD-STD-2167A

Program Status Word, IBM computers

Policy Violation flaw, FHM

Ratings And Maintenance Program, NCSC

Revised Internet Protocol Security Option, DDN security label format
Reference Validation Mechanism, TCSEC

Software Engineering Environment

Software Design Document, DOD-STD-2167A

Strategic Defense Initiative

Strategic Defense Initiative Project Office

Software Development Plan, DOD-STD-2167A

System Design Review, DOD-STD-2167A

System Electronic Information Security Policy, ITSEC
Security Features Users Guide, TCSEC

Security Policy Model, ITSEC

Software Product Specification, DOD-STD-2167A

System Requirements Review, DOD-STD-2167A

Software Requirements Specification, DOD-STD-2167A
System Security Policy, ITSEC

System/Subsystem Specification, DOD-STD-2167A
Software Test Description, DOD-STD-2167A

Software Test Result, DOD-STD-2167A

Total Control flaw, FHM

Trusted Computing Base, TCSEC

Trusted Computer System Security Evaluation Criteria, NCSC
Trusted Database Management System Interpretation of the TCSEC
Trusted Facility Manual, TCSEC

Trusted Network Interpretation of the TCSEC
Time-Of-Check-To-Time-Of-Use flaw

Target Of Evaluation, ITSEC

Test Readiness Review, DOD-STD-2167A

Work Breakdown Structure -- project tasks, labor, schedule
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6.2 Flaw Hypothesis Sheets (FHS)

FHM candidate flaws are documented on Flaw Hypothesis Sheets (FHS), one page (record)
per flaw. A FHS is intended to be concise ang tasonplete as the ideas surface during the penetration
testing. The FHS contains seven fields, all text strings.

The first FHS field is PROBLEM IDa flaw name for identification with the syntax LLLLDD, where "L"

= letter, andD" = digit. We havedoundit convenienfor the letters t@ncodeheevidencdtem, e.g.,

"FS" = FTLS, andthe initials of the evaluator assigned, with the digits sequencing each flaw candidate
persystemarea omodule.Typically, there can baundredsf flaws, but seldommorethata few per

area.

Field 2 is PRIORITY, a two-part ranking of the FHS:

(1) An assessment of the probability of the flaw being confirmed.
(2) The damage impact of the flaw on the protection of the system, if realized.

Both probabilities areneasured on a scale of High, Medium, or Low. The combined assessment of HH,
HM, HL, MH, ... ,LL yields an overall scaleof nine for ranking FHS. The rankingis valuablein
allocating resources during the Flaw Confirmation stage of

penetration testing.

Field 3 is WORK FACTOR, a H, M, dr estimateof the work required tdemonstrata flaw. High
work-factor flave, e.g., cracking encryption codes, are given lower consideration for High effort even if
the flaw is ranked HH.

Field 4 isREFERENCESOURCE, theevidenceinventory nameor number in theonfiguration
management system from which the FHS was generated. This field's syntax is system specific.

Field 5, VULNERABILITY, is anEnglish description in detail of the potential flaw, its location in the
evidence, the endnment conditions, the weakness perceived, a characterization of the flaw taxonomy,
e.g., residu@roblem. It should be brief, but sufficient for another evaluator to understand and pursue if
the FHS is reassigned. The ten most productive generators (listed in Section 3.4).

Field 6 describedriefly the ATTACK STRATEGY for demonstrating the flaw and for exploiting it if
confirmed.Sections3.4 and 4.3 aresefultaxonomiedor description.Sufficient detail of the attack

should be noted to aid another evaluator, etgllitty for passwords in the print spool file." Suggestions
shauld be notedof closelyrelatedattacks,or afamily of attacksdue to adesign,implementationpr
opeationalflaw, e.g.,"coding error in macro 26." The FHS&tackstrategylisted is onesuggested
approach to enfirming theflaw. The evaluatorhas the lastvord, andmayfind alternativeand better
approaches. It ithe result that counts. The approaches tried should be posted in the FHS after the fact
so they are not repeated by others.

The lastfield, Field 7 is ASSESSMENTwhich documentghe approach(es) tried and the results
achieved- confirmed,not confirmed,partial successiottried. Theassessmerghouldqualify results
obtained fom: live test, observation, or Gedanken experiment. If there is a formal test report, the result
should reference the appropriate sections.
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The total set of FHSs beconibe flaw database that guides and documents the penetration testing. The
FHSs can be mechanized with a word pssoe or a DBMS. Most penetration tests adapt the FHS fields
to their liking and available tools. Figure 6-1 is an example FHS.

PROBLEM ID: SOCW-1
PRIORITY: HH
WORK FACTOR: L

REFERENCE SOURCE:TFM

VULNERABILITY: Training Wheels
Operator ID = SO (Security Officer)
Password may be preset from vendor.

ATTACK STRATEGY: Try typical passwords
Password =SS0
= vendor's name
ASSESSMENT: Confirmed
Password = ADMIN

Tried various passwords and obtained root privilege.

Figure 6-1. Example Flaw Hypothesis Sheet (FHS)

6.3 Model Penetration Testing Tasking
Table 6-1givesa modeltwo-level Work BreakdownStructure (WBS)f tasksfor a typical FHM

penetration test. Adapt the modslnecessary to the needs of each penetration testing effort. Most tasks
are described in the main text; however, a few need some expansion here.
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Table 6-1. Model FHM WBS

WBS Tasks

Management

1.1 Penetration Plan Development

1.2 Team Selection and Management

1.3 Lab and Facilities Management

1.4 Program Control & Contracts

15 CM/DM - Evidence, Tests, Results (FHS Database)

1.6 Customer/Vendor Coordination-Requirements/Materials, Progress Briefs
1.7 Scheduling & Progress Status

Training & Preparation

2.1 FHM & Professional (Ethical) Rules of Conduct

2.2 Penetration Testing Past History

2.3 Target Of Evaluation (TOE) System Architecture Review
2.4 TOE TCSEC Evidence Walk Through

2.5 Tools Familiarity - TOE & FHM

Generation

3.1 Initial Brainstorming Sessions

3.2 Dependency Graph Generation

3.3 Confirmation Strategies & Staff Assignments

34 Building and Ranking FHS Database

Confirmation

4.1 Daily Results Status Meetings - Replanning Priorities
4.2 Gedanken Experiments

4.3 Live Test Planning - Procedures, Tools, TOE Configuration
4.4 Live Testing

4.5 FHS Database Updated - Results & New FHS

Generalization

51 Weekly Results Analysis Brainstorming Session

5.2 Confirmed Flaw Induction Analysis - Understanding Generic Cause
5.3 FHS Database Updated - Results & New FHS

54 Repeat Generation Stage for New FHS and Insights
Elimination

6.1 Confirmed Flaws Documented - Expand FHS

6.2 Customer/Vendor Flaw Presentation

6.3 Test Customer/Vendor Flaw Fix

6.4 Regression Testing After All Customer Fixes

Wrap Up

7.1 Final Report Prepared - Results, Residual Flaws

7.2 CM/DM Material Properly Disposed Of - Return, Destroy, Store
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6.3.1 Management

If not partof a larger programmany penetrationtesting support tasksnust be performedby a
maragementask. Thepenetratiortestingwill require access teendorhardware/softwareandteam
utilization of the TOE lab andhcilities. ConfigurationManagement/DatdManagemen{CM/DM) is
required for all TCB evidence, lab equipmertftsare, penetration testing tools, FHS database, and test
results. The teammust assure protection of all proprietary and classified items. Work is heaviest at the
start and finish of the effort to plan, initiate, finalize, and complete the penetration testing.

6.3.2 Training

This could be part of Management; howeitds treated separately here to make visible the extent of the
training needed on the TOE. Faom experienced team, FHM, tools, and history training are not required.
Training is an early scheduled effort to establish a common knowledge base for the team.

6.3.3 Elimination

If penetration testing continues long enougletarier flaws to be repaired by the customer/vendor, these
fixes need to beetested. However, the fixed systemshould be viewed as a new releassef the
systemproduct, thereby requiring a regression test of all prior confirmed flaws, and new tests to assure
that the fixes did not introducewdlaws. Regression testing is not covered in the Figure 6.2 WBS labor
estimates, oglfix retesting. Regression testing is notudied because the vendor will usually take longer

to fix flaws in a newelease than the time allotted for the whole penetration test, and because regression
testing a new release is essentially a whole new penetration test.

6.3.4 Wrap Up

The fnal stage is preparing tHimal reportfor the DAA ordesignatedecipient,anddisposingin a
sensitive manner, of all the CM/DM materials collected.

6.4 Model WBS Schedule, Milestones, And Labor

Figure 6-2 presentsrmodelWBS, labor-loadediy person-month$éPM) permonthfor the top-level

(levd 1) penetration testing tasks. Labor-loadings also show the task scheduling. Management effort is
spent throughout the teg, with greater effort at the start and finish. CM/DM is performed throughout
the testing. Taining is up front for some of the team. Generation makes a big push early, but sees effort
over muchof the performanceperiod since ideas ateggeredby Generalizatiorand other tasks.
Confirmation is througout the effort flowing one month behind Generation. It is 33% of the total effort.
Generalization begins about the middle of the effort whefirowd flaws begin to accumulate, and drops

off toward theend.Eliminationis avendortask. Theeffort shownis for the teamto coordinateand
prepareflaw descriptiondor thevendor,and to retest any fixed flaws. Wrap up is also a management
task, but separatdtere because it deals with technical matters, preparing the final report and disposing
of all sensitive materialscollectedin CM/DM duringthe effort. Overall, management-relatedsks --
Management, Taining,and Wrap Up -- are about 338hthetotal effort. If there exists permanent
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penetréion testing organization performing multiple and concurrent penetration tests with experienced

folks, the management effort can be halved.

WBS Task Months Totals
12 3 4 5 6 % pm

1. Management 105 0.250.25 05 15 16.67% 4
2. Training 1505 8.33% 2
3. Generation 115 05 05 05 16.67% 4
4. Confirmation 0.51.5 1.752.25 1.5 0.5 33.33% 8
5. Generalization 1 05 05 8.33% 2
6. Elimination (*) 0.5 05 0505 833% 2
7. Wrap Up 05 15 8.33% 2
Totals 4 4 4 4 4 4 100.0% 24

* Vendor labor to fix not shown, only team coordination &
retests

Figure 6-2. Model WBS Schedule And Labor-Loadings
(All labor shown is in person-months, pm)
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